Validation of and Enhancements to an Assessment Framework for Impounded Wetlands of Great Salt Lake

PREPARED FOR: Utah Department of Environmental Quality, Division of Water Quality

PREPARED BY: CH2M HILL

DATE: October 8, 2014

PROJECT NUMBER: 469005

Contents

1. Int	troduction	1
	1.1 Background	1
	1.2 Draft Assessment Framework for GSL IWs	1
	1.3 Key Objective	1
2. M	ethods	2
	2.1 Compiling and Organizing Existing Data	2
	2.2 Draft MMI Validation and Improvement: An Iterative Approach	9
3. Re	esults and Discussion	20
	3.1 Compiling and Organizing Existing Data	20
	3.2 Draft MMI Validation and Improvement: An Iterative Approach	24
4. Co	onclusions and Recommendations	36
	4.1 Next Steps	37
	4.2 Acknowledgements	37
5. Re	ferences	38
Table	es	
1	Data Sources and Metrics Analyzed for Developing the Draft MMI (2003 to 2009)	
	for Impounded Wetlands of the Great Salt Lake	2
2	Great Salt Lake Impoundment Wetland Sites Targeted for Sampling of Water Quality, Plant, a	
	Macroinvertebrate Data for the Draft MMI	
3	Water Chemistry Variables and Metrics Included in the Draft and 2012 WC MMIs	
4	Scoring System for SAV Metrics—IW Sites in 2012	
5	Scoring System for Surface Mat Metric—IW Sites in 2012	
6	Scoring System for Macroinvertebrate Metrics—IW Sites in 2012	9
7	Macroinvertebrate Taxa Contributing to the PMI and COTE Metrics and	
	Ecological Association with SAV	
8	Scoring System for New Macroinvertebrate Metrics for the Draft MMI	
9	Scoring System for New Macroinvertebrate Metrics for the IW in 2012	
10	Water Quality Characteristics and Potential Stressors for All Ponds (2003 to 2009)	
11	Water Quality Characteristics and Potential Stressors for All Ponds (2010 to 2011)	
12	Water Quality Characteristics and Potential Stressors for All Ponds (2012)	23
13	Statistical Tests for Initial Validation of the Draft MMI	25
14	Statistical Tests for Second Validation of the Draft MMI with FC-adjusted 2012 FH MMI	27

15	Statistical Tests for Final Validation of the Updated Draft MMI with EC-adjusted 2012 EH MMI	31
16	Statistical Tests for Validation of the Updated Draft MMI with 2012 EH MMI	
	without EC Adjustments	
17	Sorted EC-Adjusted EH MMI Observations for IWs in 2012	34
Figure	es ·	
1	Vicinity Map and Location of GSL Impounded Wetlands Sampling Sites Used from 2003-2009 and in the 2012 Sampling Season	4
2	Iterative Approach for Validation and Improvement of the Draft MMI using 2012 IW Data	10
3	Conceptual Schematic Depicting the Process of Using the Draft MMI to Predict EH MMIs for IW Sites in 2012	11
4	Conceptualized Least Squares Regression of Observed EH MMI on Predicted EH MMI	
5	Conceptualization of the Draft MMI Validation and Calibration Process,	
	Using Four Statistical Validation Outcomes	15
6	Iterative Validation and Calibration Process used in This Study to Improve the Draft MMI	16
7	Draft MMI (2003 to 2009) Model of EH MMI versus WC MMI (UDEQ, 2009)	24
8	Initial Validation Comparing EH MMIs Predicted by the Draft MMI to EH MMIs	
	Observed in IWs of GSL in 2012	
9	EH MMIs Plotted versus Average EC for 2012 IW Sites	26
10	Regression Models of 2012 Observed EH MMIs and Relative Average ECs for Estimation of EC Effects	26
11	Second Validation Test Comparing EH MMIs Predicted by the Draft MMI to EC-adjusted EH MMIs	5
	Observed in IWs of GSL in 2012	27
12a	New Macroinvertebrate Metrics versus Draft WC MMI	28
12b	NMBI (2003 to 2009) versus Draft WC MMI	29
13	Comparison of the Old and Updated MMIs Fitted with Linear Regressions	29
14	Updated MMI (with New Macroinvertebrate Metrics) Described with a	
	Power-fitted Regression Line	30
15	Final Validation Test Comparing New EH MMI Predicted by the	
	Updated MMI to EC-adjusted EH MMIs Observed in IWs of GSL in 2012	31
16	Validation Test Comparing New EH MMI Predicted by the	22
47	Updated MMI to EH MMIs without EC Adjustments Observed in IWs of GSL in 2012	
17	Linear Regressions of EH MMIs on WC MMIs for IW sites in 2012	33

Appendix

A Supporting Tables

1. Introduction

1.1 Background

Located downstream of urban areas, framed by berms, weirs, and culverts, and largely managed to optimize habitat for waterfowl, the water quality of impounded wetlands (IWs) of Great Salt Lake (GSL) has been a significant challenge to understand, assess, and manage. Not only are IWs complex and dynamic, but the unique nature of these wetlands make it extremely difficult to assess their condition using typical criteria.

The Utah Division of Water Quality (UDWQ) and its partners initiated research in 2004 to characterize these wetland resources and develop defensible assessment methods that would enable UDWQ to manage IW water quality and protect their beneficial uses. Miller and Hoven (2007) provided a review of research completed through 2007 and included recommendations for potential metrics to assess the condition of IWs. UDWQ updated this effort and incorporated new data into a draft assessment framework specifically developed for the GSL IWs (Utah Department of Environmental Quality [UDEQ], 2009). This draft assessment framework outlined an approach for assessing the condition of IWs with the intent that it would be validated and improved for use in UDWQ's watershed approach toward the GSL wetlands (see UDEQ, 2009 for a discussion of this watershed approach). The objective of this project is to validate and improve this draft assessment framework for GSL IWs.

1.2 Draft Assessment Framework for GSL IWs

The 2009 Draft Assessment Framework for GSL IWs is composed of multi-metric indices (MMIs) that relate the physical, chemical (water chemistry), and biological conditions of the IWs of GSL. These MMIs integrate measures of water chemistry (Chemistry MMI) and the condition of submerged aquatic vegetation (SAV MMI), surface algal mats (Surface Mat MMI), and benthic macroinvertebrates (Macroinvertebrate MMI) with the beneficial uses of the wetlands to present an overall score card of the physical, chemical, and biological condition of wetland sites. The SAV, Surface Mat, and Macroinvertebrate MMIs are used to represent biological responses related to variations in the Chemistry MMI, and as such, serve as an integrated measure of ecosystem health. While the 2009 Draft Assessment Framework (hereafter referred to as Draft MMI) was known to have limitations, it provided UDWQ with a foundation by which it could move its efforts forward to assess the condition of these wetlands (UDEQ, 2009).

1.3 Key Objective

UDWQ's objective is to develop an assessment framework for GSL IWs that can be used to report the biological condition of IWs and evaluate the effectiveness of management activities with respect to wetland water quality. Using the Draft MMI, UDWQ worked with the U.S. Environmental Protection Agency (EPA) to develop a Sampling and Analysis Plan (SAP) (UDEQ, 2012) with the goal of developing an independent dataset that could be used to validate and improve the Draft MMI. UDWQ implemented the SAP in 2012 and began evaluation of the dataset in January 2013.

The objective of this study is to validate and improve the Draft MMI—that is, the MMIs that make up the draft assessment framework—through the following tasks:

- 1. Compile and organize existing data (datasets from 2003 to 2009, 2010 to 2011, and 2012)
- 2. Validate the Draft MMI against independently collected data
- 3. Evaluate additional metrics (covariates)
- 4. Characterize the range of ecological condition of IW sites using the updated IW MMIs

This technical memorandum summarizes methods used (Section 2.0), results and discussion (Section 3.0), and conclusions and recommendations (Section 4.0). Section 2.0 describes how data were collected, organized, and summarized. The process for developing and validating the MMIs is described, including how iterative changes were made to the MMIs to account for potentially useful covariates and the development of new biological

1

response metrics. Section 3.0 presents the results of these efforts and a discussion of their significance in characterizing the GSL impounded wetlands. Section 4.0 highlights the key conclusions of this MMI validation study and provides specific recommendations for building on the IW MMI.

2. Methods

The objective of this study is to validate the approach and the metrics used to develop the Draft MMI for GSL IWs. The Draft MMI for GSL IWs is based on data for multiple water chemistry (and sediment nutrients), SAV, surface mat (algae and duckweed), and macroinvertebrate metrics that were collected from 2003 to 2009 (UDEQ, 2009). In 2012, data on the same metrics that formed the Draft MMI were collected from 53 GSL IW sites for testing, validating, and refining the Draft MMI (see Figure 1) (UDEQ, 2012). Since the selected IW sites in 2012 are completely independent from those used to develop the Draft MMI, they can be used to conduct a thorough independent and unbiased evaluation of the Draft MMI.

2.1 Compiling and Organizing Existing Data

Multi-metric biological and chemical data required for the validation and improvement of the Draft MMI were sourced from multiple years and were generally divided into the following two categories: (1) Historic data on which the Draft MMI was based (2003 to 2009) and (2) data collected in 2012 for independent validation of the Draft MMI using the approach described in Section 2.2. Considering the extensive amounts of data involved and the complexity of the dataset at hand, an important initial step in the MMI validation and improvement process involved the compilation and organization of this data to support development of the MMI and subsequent statistical analyses.

2.1.1 Draft MMI Database (Historic Database 2003 to 2011)

The Draft MMI was developed using water chemistry, plant, and macroinvertebrate data collected from GSL IWs from 2003 to 2009. The various metrics and time periods over which data for compiling these metrics were collected are summarized in Table 1 (Table 4-1 in the UDEQ 2009 Report). Data collection sites are summarized in Table 2 (Table 4-4 in the UDEQ 2009 Report) (see Figure 1). Selected water chemistry metrics (listed in Table 3) were used to develop the water chemistry MMI for the Draft MMI. Data from plant (SAV and surface mat) and macroinvertebrate metrics were used to calculate respective MMIs, which were then combined into an overall 'Ecosystem Health' (EH) MMI (method details are provided in Section 2.1.2.2 of this report). The water chemistry MMI and EH MMI are both components of the Draft MMI (UDEQ, 2009).

TABLE 1
Data Sources and Metrics Analyzed for Developing the Draft MMI (2003 to 2009) for Impounded Wetlands of the Great Salt Lake

Bata Sources and Met	The straig zea for Beveloping	inc Drait willing 2003 to 2007) for impounded wellands of the C	I
Data Group	Metric Group	Metrics Summary	Data Collection Periods
Water Chemistry	Water Quality	pH, DO, TSS, chlorophyll-a, phosphorus (dissolved P, total P and sediment total P), nitrogen (ammonia N, nitrate/nitrite N, dissolved organic N, and sediment total N), salinity	2003 to 2009
Plants	SAV Algae and Duckweed (Surface Mat Cover)	Maximum SAV, fall SAV, percent change SAV Maximum algal mat cover, Maximum duckweed cover	2008
Macroinvertebrates	Benthic Macroinvertebrates	Ephemeroptera (mayflies) percent of total sample number, Simpson's Diversity Index, Hyalella (Amphipods) percent of total sample number, total taxa, number of coleoptera (beetle) taxa	Mostly based on data from 2007, but also evaluated some data from 2004 to 2006

Notes:

DO = dissolved oxygen

N = nitrogen

P = phosphorus

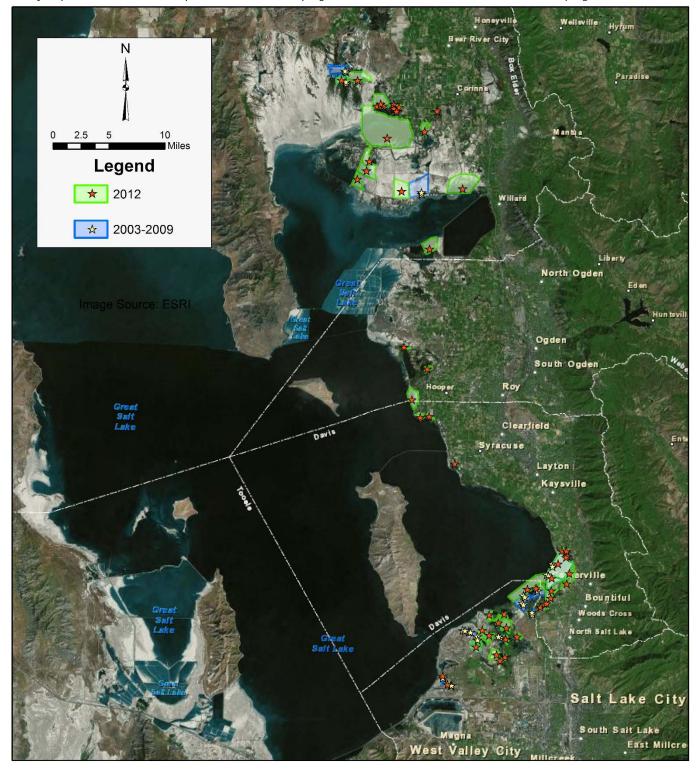
SAV = submerged aquatic vegetation

TSS = total suspended solids

TABLE 2
Great Salt Lake Impoundment Wetland Sites Targeted for Sampling of Water Quality, Plant, and Macroinvertebrate Data for the Draft MMI

Site	Water Quality	Plants	Macroinvertebrates
Farmington Wetlands Ambassador W 1	Υ	Υ	Υ
Farmington Wetlands Ambassador 100	Υ	Υ	Υ
Farmington Wetlands Ambassador W 2	Y	Y	Y
Farmington Wetlands Ambassador W 5	Υ	Υ	Υ
Farmington Wetlands South B Pond	Υ	Υ	N
Farmington Wetlands West A Pond	Υ	Υ	N
Farmington Wetlands FBWMA Unit 1 Outfall	Y	Y	Y
Farmington Wetlands FBWMA Unit 2 Outfall	Υ	Υ	Υ
IMPC Conservation Easement	Υ	Υ	N
GSL Wetlands Public Shooting Ground Widgeon Lake 01 Outfall	Y	Y	Y
GSL Wetlands Public Shooting Ground Pintail Lake Outfall	Υ	Υ	Υ
Bear River NWR Pond 4C Outfall	Υ	Υ	N
Newstate Duck Club Middle Unit	Y	Y	Y
GSL Wetlands Newstate Duck Club Pond 47	Y	Υ	Y
GSL Wetlands Newstate Duck Club Pond 20	Y	Υ	Y
GSL Wetlands Newstate Duck Club Unit 5-6	Y	Υ	Y

Notes:


FBWMA = Farmington Bay Waterfowl Management Area

GSL = Great Salt Lake

N = Site not sampled

Y = Site sampled

FIGURE 1
Vicinity Map and Location of GSL Impounded Wetlands Sampling Sites Used from 2003-2009 and in the 2012 Sampling Season

Additional data on the same water chemistry, plant, and macroinvertebrate metrics were collected in 2010 and 2011, and this data was compiled and organized for data summarization. Although the 2010 to 2011 biological metrics data were not incorporated into the Draft MMI as part of this effort, the data were retained for further improvement of the MMI as our scientific understanding of GSL IWs increases with additional studies.

An important step in the selection of water quality metrics for the Draft MMI included the development of summary statistics that described ranges, measures of central tendency, and percentiles of data distribution. These summary statistics were then screened against known thresholds and criteria to select measures that were most likely to affect wetland biota (UDEQ, 2009). In this study, we repeated this process with the 2010 to 2011 water chemistry data added to the 2003 to 2009 water chemistry dataset to evaluate whether inclusion of the new water chemistry data would significantly affect the summary statistics, and thus selection of the metrics involved.

2.1.2 Independent 2012 Impounded Wetlands Database

Biological, chemical, and physical data were collected at 53 randomly selected IW sites during the summer and fall of 2012 according to UDEQ's SAP (UDEQ, 2012). Biotic, water chemistry, and sediment chemistry data collected from these 53 IW sites (used data from 50 sites in this analysis because of data gaps) were to be used to independently validate the MMI approach and to help verify whether the Draft MMI could reliably describe the range of IW conditions encountered along the margins of GSL. For purposes of comparison and validation, the same methods and metrics that described the indices in the draft IW MMI were also sampled to develop indices for water chemistry (including sediment nutrient availability), SAV, surface mat cover, and macroinvertebrates (UDEQ, 2012) for IW sites in 2012. Summary water quality statistics describing ranges, measures of central tendency, and percentiles of data distribution were developed for these IWs, and then screened against known thresholds and criteria (shown in Table 12).

Additional data that described metrics for zooplankton communities and surface sediment diatoms were also collected for the 53 IW sites in 2012, but were not used during this MMI validation process, as zooplankton and diatoms were not part of the Draft MMI. However, these may prove useful in development of supplemental indicators of impounded wetland function in the future.

Details of the field sampling procedures, laboratory procedures for sample analysis, data quality objectives, quality control requirements for field and laboratory procedures, and requirements for data analysis and record keeping are provided in the Sampling and Analysis Plan (UDEQ, 2012).

2.1.2.1 Developing the Water Chemistry MMI for 2012 IW Sites

The Draft MMI validation process (described in Section 2.2) necessitates the estimation of independent MMIs for water chemistry and biotic variables for IW sites in 2012. The Water Chemistry (WC) MMI for IW sites in 2012 was developed from the same metrics that described water chemistry variables in the Draft MMI (UDEQ, 2012). Metrics for total suspended solids (TSS), chlorophyll-a (Chl-a), dissolved oxygen (DO), phosphorus (P), and nitrogen (N) that were used to develop both the draft and the 2012 water chemistry MMIs are listed in Table 3.

TABLE 3
Water Chemistry Variables and Metrics Included in the Draft and 2012 WC MMIs

Water Chemistry Variable	Water Chemistry Metrics ¹
TSS	Minimum TSS
	Maximum TSS
Chl-a	Minimum Chl-a
	Maximum Chl-a
DO	Minimum DO
p ²	Dissolved P–Maximum
	Total P–Maximum
	Dissolved P–Geometric Mean
	Total P–Geometric Mean
	Sediment Total P
N^2	Ammonia N–Maximum
	Ammonia N–Geometric Mean
	Nitrate/Nitrite N–Maximum
	Nitrate/Nitrite N–Geometric Mean
	Dissolved Organic N–Maximum
	Dissolved Organic N–Geometric Mean
	Sediment Total N

Notes:

¹Minimum, maximum, and geometric means for 2012 were based on the summer and fall samples in 2012 (two samples). See UDEQ, 2012 for definition of sampling index periods.

²The Draft MMI Report (UDEQ, 2009) erroneously noted the use of minimum P and N metrics in the water chemistry MMI.

Chl-a = chlorophyll-a

DO = dissolved oxygen

N = nitrogen

P = phosphorus

TSS = total suspended solids

Reexamination of the database revealed that minimum P and N metrics were not included in the Draft MMI, and these metrics were therefore not included in the 2012 MMI.

The WC MMI for 2012 IW sites was developed using the same methods used to construct the Draft MMI (UDEQ, 2009). Similar to the Draft MMI, the goal for 2012 data was to combine all summary statistics (for example, maximum, minimum, and geometric means) and parameter constituents to accommodate different units and the relative scale of changes among chemical measures. MMI values were calculated using the following steps:

- A. Rescale all of the constituent measures within each chemical variable group (see Table 3) to generate a dimensionless metric:
 - 1. Calculate the relative concentration across sites by dividing the metric value measured at the site (for example, minimum TSS and minimum DO) by the geometric mean of the metric across all sites
 - 2. Create a metric for each constituent measure by rescaling the data so that it ranges between values from 100 (relatively good water quality) to 0 (relatively poor water quality)

For "decreaser variables"—variables whose values are expected to decrease with stress (for example, DO)—divide the relative concentration obtained at the site by the maximum relative concentration across all sites, then multiply by 100.

For "increaser variables"—variables whose values are expected to increase with stress (for example, TSS, CHI-a, P, and N)—follow the same process, except subtract the final value from 100 so that lower scores indicate poorer water quality.

- B. Combine the constituent metrics used to summarize each parameter into a single MMI for the parameter (for example, DO MMI and Chl-a MMI):
 - 1. Calculate the average of all constituent metrics as the Site_{avg} (for example, $Avg_{chl-a} = (Chl-a Min Metric + Chl-a Max Metric)/2)$
 - 2. Rescale the average values so that the site with the best water quality receives a score of 100 as follows:

$$MMI_{parameter} = (Site_{avg}/maximum of Site_{avg} across sites) \times 100$$

- C. Calculate a final chemical MMI by combining the scores obtained from all parameter:
 - 1. Calculate the average of MMIs obtained for all parameters for each site:

$$Avg\ MMI_{site} = (MMI_{chl-a} + MMI_{DO} + MMI_{TSS} + MMI_{N} + MMI_{p})/5$$

2. Rescale so that the site with the best relative chemistry receives a score of 100:

2.1.2.2 Developing Biotic MMIs and the EH MMI for 2012 IW Sites

Similar to the process used in the Draft MMI (UDEQ, 2009), three biotic MMIs (SAV, Surface Mat, and Macroinvertebrate) were computed to include in the EH MMI for IW sites in 2012. The metrics contributing to each of these biotic MMIs were the same metrics as those incorporated into the Draft MMI (UDEQ, 2009). The basis for selecting the biotic MMI metrics is provided in the Draft MMI (UDEQ, 2009).

SAV Metrics and MMI

The following three metrics were generated to describe SAV condition from data collected from IW sites in 2012:

- Maximum SAV: the maximum of transect averages of SAV percent cover from the late-June to early-August sampling event
- Fall SAV: average percent cover from late-August to September sampling event
- Percent change in SAV: the percent change in SAV between the maximum and fall samples

The process for developing the MMI includes converting the metrics data into a common scoring base. Scoring of metrics is necessary when metrics are quantified with different units, have different absolute numerical values (numbers of taxa, percentages, densities, etc.) and show different responses to disturbance (some metrics increase, while other decrease in response to disturbance). In other cases, variables may not respond proportionally across the data range (for example, increasing cover of algal mats is not considered to be a continuously [negative] response—instead, low levels of algal mat cover are reasonable and expected, but concerns arise after some threshold cover level above which the site is usually considered degraded). To resolve such differences, scores are assigned to each metric, ideally based on expectations for the metrics at minimally disturbed or reference sites (Karr and Chu, 1999). For example, metrics at minimally disturbed or reference sites are assigned a score of 5, those that deviate somewhat from such sites are assigned a score of 3, and those that deviate strongly are scored 1 (Karr and Chu, 1999). Metrics scored in this manner can then be readily combined into a multi-metric index. Percentile rankings can help establish breakpoints in the metrics data to facilitate the scoring.

Scores were assigned to the SAV metrics based on the upper and lower quartiles of the SAV metrics data (see Table 4). In the scoring system, $1 = 25^{th}$ percentile or lower, $3 = 25^{th}$ to 75^{th} percentile, and 5 = higher than 75^{th} percentile.

TABLE 4
Scoring System for SAV Metrics—IW Sites in 2012

3 3	Scoring ¹					
Metric	1	3	5			
Maximum SAV	0 to 29 percent	30 to 91 percent	> 91 percent			
Fall SAV	0 to 52 percent	53 to 88.5 percent	> 88.5 percent			
Percent Change SAV	> 86.9 percent	19.7 to 86.9 percent	< 19.7 percent			

Notes:

For each IW site, the score value for each SAV metric was scaled to the highest possible score (5) and estimated as follows:

SAV Metric_{site} = (metric score for the site/5)
$$\times$$
 100

The average SAV MMI for each site was estimated as the average of three SAV metrics, and then scaled to the maximum average SAV MMI across all sites to estimate the SAV MMI for each site.

Surface Mat MMI

The Surface Mat MMI consisted of a single metric, maximum percent mat cover, based on the late-June to early-August and late-August to September sampling events.

Scores were assigned to the surface mat metric based on the quartiles of the metric data (see Table 5).

TABLE 5
Scoring System for Surface Mat Metric—IW Sites in 2012

	Scoring ¹					
Metric	1 3 5					
Maximum Percent Mat Cover	>50 percent	14 to 50 percent	0 to 13 percent			

Note:

For each IW site, the metric score value was scaled to the highest possible score (5) to estimate the Surface Mat MMI:

Surface Mat MMI_{site} = (metric score for the site/5) \times 100

Macroinvertebrate Metrics and MMI

Five macroinvertebrate metrics were evaluated for IW sites in 2012, based on the same macroinvertebrate metrics that were used in the Draft MMI:

- Percent Ephemeroptera (mayflies): percent of total count
- Percent Hyallela: percent of total count
- Total number of macroinvertebrate taxa
- Simpson's Diversity Index
- Number of Coleoptera (beetle) taxa

All macroinvertebrate metrics used the maximum values observed between the summer (late-June to early-August) and early autumn (late-August to September) sampling events in 2012.

¹Scores are based on the upper and lower quartiles as break points.

SAV = submerged aquatic vegetation

¹Scores are based on the upper and lower quartiles as break points.

Scores were assigned to the macroinvertebrate metrics based on the percentiles of the metrics data (see Table 6).

TABLE 6
Scoring System for Macroinvertebrate Metrics—IW Sites in 2012

	Scoring ¹						
Metric	1	5					
Percent Ephemeroptera	0.8 percent or less	>0.8 to 24.8 percent	>24.8 percent				
Percent Hyallela	0 percent	>0 to 9.2 percent	>9.2 percent				
Total Taxa	7 or less	8 to 13	14 or more				
Simpson's Diversity Index	0.63 or less	0.64 to 0.81	>0.81				
Number Coleoptera Taxa	0	1	2 or more				

Note:

For each site, the scores for all five metrics were summed to provide the MMI score for that site. Values of macroinvertebrate scores ranged from a minimum of 5 (each of the five metrics received a score of 1) to a maximum of 25 (each of the five metrics received a score of 5) for each site. The macroinvertebrate MMI for each site was then estimated as follows:

Macroinvertebrate MMI = (Summed Score/25) × 100

Ecosystem Health MMI

The EH MMI was estimated as the average of the plant and macroinvertebrate MMIs:

EH MMI = (SAV_{MMI} + Surface Mat_{MMI} + Macroinvertebrate_{MMI})/3

2.2 Draft MMI Validation and Improvement: An Iterative Approach

An iterative approach was adopted for validating and improving the Draft MMI (see Figure 2). This approach includes the testing, initial validation, calibration, and revalidation of the Draft MMI using data collected at the 53 independent IW sites in 2012, and involves the following steps (see Figure 2):

- 1. Compute the MMIs for 2012 IW Sites—Observed EH: Data on water chemistry (includes sediment nutrient availability), SAV, surface mat, and macroinvertebrate metrics collected from the 53 IW sites in 2012 were organized and compiled to compute MMIs for these individual lines of evidence (see Section 2.1.2 for method details). These MMIs were computed using the same metrics and processes that were used to develop the Draft MMI from the 2003 to 2009 dataset (UDEQ, 2009). The 2012 MMIs for the biota (SAV, Surface Mat, and Macroinvertebrates) were then combined to compute the 2012 EH MMIs. The 2012 EH MMIs were subsequently used in the MMI validation process as independently observed EH values representing the 53 IW sites in 2012 (see Figure 2).
- 2. Use the Draft MMI to Predict EH for 2012 IW Sites: The Draft MMI based on 2003 to 2009 GSL IW data consists of metrics that describe the relationship of ecosystem health (SAV, Surface Mat, and Macroinvertebrates) to water chemistry (UDEQ, 2009). Since the same metrics are used to develop WC and Biotic MMIs for both the 2003 through 2009 and the 2012 datasets, the relationship observed between the Chemistry MMI and EH MMI for the draft dataset is used to estimate Predicted EH-MMI values based on the 2012 Chemistry MMI. As such, the 2012 WC MMI values are plugged into the Draft MMI to predict EH MMI for each of the 53 IW sites for 2012 (see Figure 2). This step is depicted conceptually in Figure 3.

¹Scores are based on the upper and lower quartiles as break points.

- 3. **Conduct Initial Validation of the Draft MMI:** Predicted EH values for 2012 IW sites are then statistically compared to observed EH values at those sites to evaluate the accuracy of the Draft MMI model (see Figure 2). These statistical tests (described in Section 2.2.1) provide insights into the relative sources and distributions of systematic and random errors in the regression model of observed versus predicted EH values, and thus allow a rigorous and quantitative validation of the Draft MMI (Rice and Cochran, 1984).
- 4. **Explore Sources of Errors, Calibrate, and Revalidate the Draft MMI:** The results of the validation conducted in Step 3 will have two possible outcomes (see Figure 2):
 - a. Successful validation, indicating that the Draft MMI predicts EH values with reasonable accuracy and relatively minor contributions by systematic errors. In this case, no further steps are required and the Draft MMI is deemed acceptable for evaluating EH.
 - b. Unsuccessful validation, with relatively large contributions by systematic errors. The accuracy of the MMI may be improved by exploring the use of additional metrics or covariate effects. These additional metrics or covariates are selected for evaluation based on ecological knowledge gained from multi-year studies on the GSL IWs (CH2M HILL, 2005 and 2006; Gray, 2005 and 2009; Miller and Hoven, 2007; UDEQ, 2009). The adjusted (calibrated) MMIs are then revalidated using Steps 2 and 3, until successful validation of the Draft MMI (see Step 4a) is attained.

FIGURE 2
Iterative Approach for Validation and Improvement of the Draft MMI using 2012 IW Data (Note: BMI = benthic macroinvertebrates)

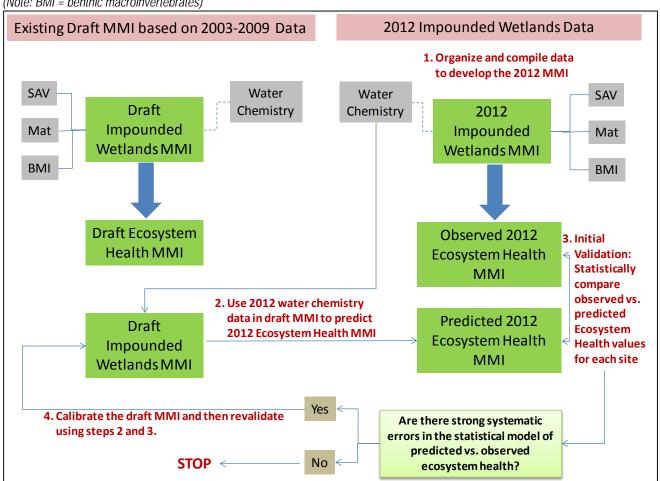
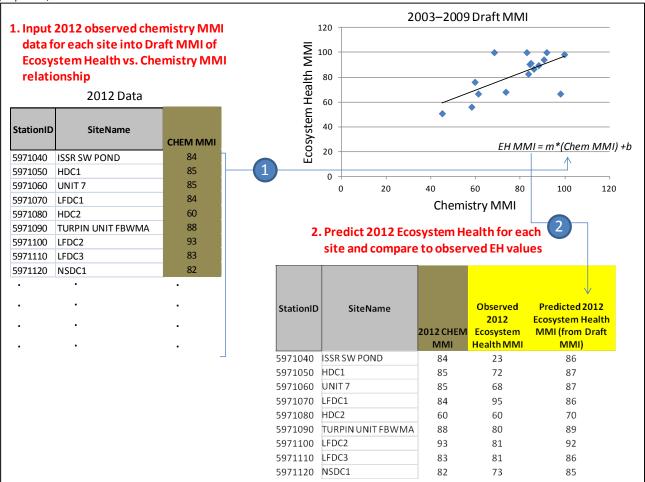
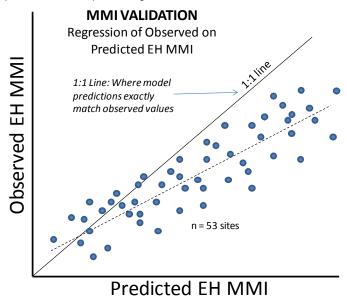



FIGURE 3
Conceptual Schematic Depicting the Process of Using the Draft MMI to Predict EH MMIs for IW Sites in 2012
(Note: Only a few of the 53 IW sites are shown here, and all values are considered hypothetical, and shown here only for process depiction purposes.)

2.2.1 Draft MMI Validation Statistics

A statistically rigorous validation process was selected based on three independent statistical tests to evaluate how accurately the Draft MMI predicts EH MMIs for each of the 2012 IW sites. This process is partly based on a regression of observed EH values on predicted EH values for 2012 IWs, and involves the following three statistical tests conducted on various parameters associated with the regression:


1. **Partitioning of the Mean Squared Error (MSE):** This test is based on the decomposition of the MSE derived from observed and predicted EH values into the mean, slope, and random error components to assess the relative sources and proportion of errors attributed to those sources. As such, the MSE serves as a diagnostic test of the degree and sources of errors in the Draft MMI model predictions (Rice and Cochran, 1984):

$$MSE = \frac{1}{n} \sum_{i=1}^{n} (P_i - A_i)^2$$
$$= (\bar{P} - \bar{A})^2 + (S_P - rS_A)^2 + (1 + r^2)S_A^2,$$

Where: P_i and A_i represent the series of predicted and observed (actual) EH MMI values for 2012, respectively, and \bar{P} , \bar{A} , S_P , and S_A are the means and standard deviations of the series P_i and A_i , and r is their correlation coefficient.

A least squares regression of observed (A_i) on predicted (P_i) EH MMI values allows easy interpretation of the decomposition of MSE test (see Figure 4).

FIGURE 4
Conceptualized Least Squares Regression of Observed EH MMI on Predicted EH MMI

In the regression depicted in Figure 4, all points would fall on the 1:1 line in the ideal case, and the regression would have a slope of one and an intercept of 0. The MSE represents the variance of these points around the 1:1 line. Dividing the decomposition shown in the equation above by the MSE yields the proportions of MSE attributed to the three sources of error:

$$1 = \frac{(\bar{P} - \bar{A})^2}{MSE} + \frac{(S_P - rS_A)^2}{MSE} + \frac{(1 + r^2)S_A^2}{MSE}$$

$$= MC + SC + RC$$

Where, MC is the mean component, or the bias due to differences in the means of predicted and observed values; SC is the slope component, or the error resulting from the slope deviating from unity; and RC is the random component, or the proportion of MSE due to random error (Rice and Cochran, 1984). When perfect predictions (all points fall on the 1:1 line and MSE = 0) cannot be obtained, the desirable distribution of MSE over the three sources of is MC \sim 0, SC \sim 0, and RC \sim 1, indicating that errors are not systematic. For example, a result of MC = 0.75, SC = 0.10, and RC = 0.15 indicates large contributions of systematic errors in the MSE due to the MC. In another case, MC = 0.1, SC = 0.1, and RC = 0.80 indicate a desirable distribution of MSE, since 80 percent of the errors in the MSE are due to the random variations, whereas contributions by systematic errors are relatively minor (20 percent for MC and SC combined). For this study, RC \geq 0.80 was selected as acceptable for successful validation.

2. **Bonferroni Joint Confidence Intervals (BJCI) Test:** While the MSE test determines the sources of deviations between predicted and observed values, the BJCI test assesses the *significance* of systematic errors represented by the MC and SC by testing the joint null hypothesis that the regression of observed (A_i) on

predicted (P_i) EH MMI values has a slope of 1 and an intercept of zero (Rice and Cochran, 1984; Neter et al., 1989). The BJCI test estimates the joint confidence intervals for the intercept and slope as follows:

$$b_0 \pm t \left(1 - \frac{\alpha}{2}; n - 2\right) s\{b_0\}$$

$$b_1 \pm t \left(1 - \frac{\alpha}{2}; n - 2\right) s\{b_1\}$$

where b_0 is the intercept, b_1 is the slope, and $s\{b_0\}$ and $s\{b_1\}$ are standard errors of the intercept and slope, respectively, t is the Student's t-value for a statistical significance level of α and number of observed to predicted pairs of values (n). If the null hypothesis cannot be rejected, then the regression of observed on predicted EH MMI values is judged to be not significantly different from the 1:1 line.

For example, assume that a particular regression of observed versus predicted EH MMI values across n = 53 sites is defined by the following parameters:

$$b_0$$
= 0.6, $s\{b_0\}$ = 0.08, b_1 = 0.7, $s\{b_1\}$ = 0.15.

At the 95 percent confidence level (α = 0.05), it follows that:

$$t\left(1-\frac{0.05}{2};53-2\right)$$
, that is, $t(0.975;51)=2.01$ (from t-value table in Neter et al., 1989)

The BJCI of the intercept is $0.6 \pm (2.01 \times 0.08) = 0.6 \pm 0.161$. This BJCI indicates that the values of this intercept range from (0.6 - 0.161) = 0.439 to (0.6 + 0.161) = 0.761. Since this intercept interval (0.439 to 0.761) does not include a value of 0, the null hypothesis can be rejected as the intercept component of the regression of observed versus predicted values is significantly different from the intercept of the 1:1 line (which has an intercept of 0).

Similarly, the BJCI of the slope is $0.7 \pm (2.01 \times 0.08) = 0.7 \pm 0.161$. This BJCI indicates that the values of this slope range from (0.7 - 0.161) = 0.539 to (0.7 + 0.161) = 0.861. Since this slope interval (0.539 to 0.861) does not include a value of 1, the null hypothesis can again be rejected as the SC of the regression of observed versus predicted values is significantly different from the slope of the 1:1 line (which has a slope of 1).

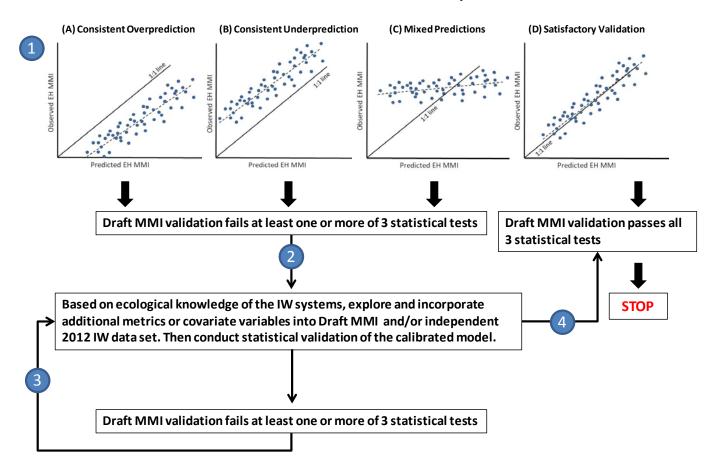
It follows from the above example that since the regression of observed versus predicted EH MMI values did not contain an intercept of 0 and a slope of 1 based on the BJCI results, the regression significantly differs from the 1:1 line and thus fails this validation test.

3. The Reliability Index (RI): The RI was developed by Leggett and Williams (1981) and integrates the statistical properties of the distributions of observed and predicted values to quantify the average factor by which predictions differ from observations. As such, the RI (k) is a number ≥ 1 , and its interpretation is that model predictions agree with observed values within a factor of k.

$$k = \frac{1 + \sqrt{\frac{1}{n} \sum_{i=1}^{n} \left[\frac{1 - \left(\frac{y_i}{\widehat{y_i}} \right)}{1 + \left(\frac{y_i}{\widehat{y_i}} \right)} \right]^2}}{1 - \sqrt{\frac{1}{n} \sum_{i=1}^{n} \left[\frac{1 - \left(\frac{y_i}{\widehat{y_i}} \right)}{1 + \left(\frac{y_i}{\widehat{y_i}} \right)} \right]^2}}$$

Where, y_i = observed values, $\widehat{y_i}$ = predicted values, and n = the number of observed versus predicted pairs of values.

Statistically, "accurate within a factor of k" means that approximately 68 percent of all possible observations are expected to be between 1/k and k times the predicted value (Rice and Cochran, 1984). An RI of k=1 indicates a perfect fit between all observed and predicted values. An RI of 2 or less generally indicates a reasonable fit between observed and predicted values, and is selected as being acceptable for successful validation in this study. For example, a result of RI = 2 indicates that approximately 68 percent of all possible observations will be between 0.5 and 2 times the predicted values. As RI approaches 1, the accuracy of the predictions gets higher. An RI of 5 indicates that predicted values differ from observed values by half an order of magnitude (Leggett and Williams, 1981).


2.2.2 Iterative Validation and Calibration Process

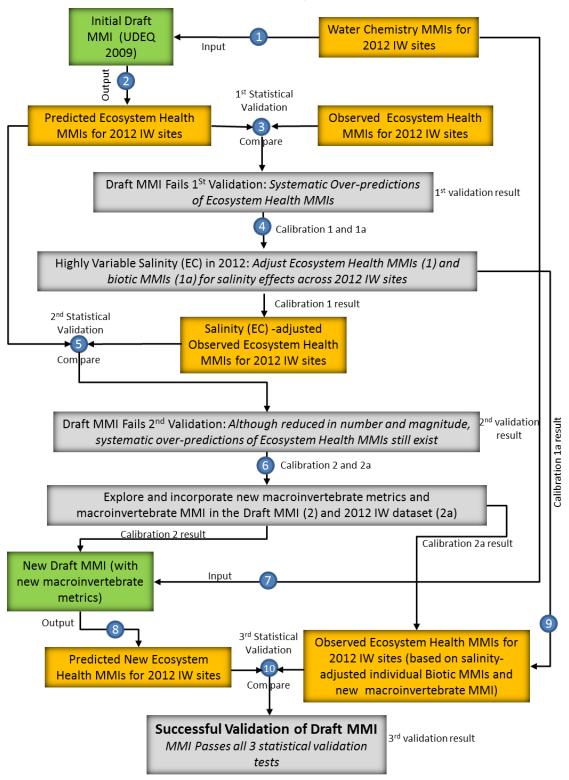
The statistical validation tests discussed in Section 2.2.1 are used iteratively in the Draft MMI validation and calibration process to systematically improve the Draft MMI (see Figure 1). This iterative process is further detailed in Figure 4, where four different outcomes (of several possible outcomes) of the statistical validation tests are conceptually shown in Figure 5, Step 1:

- A. **Consistent Over-prediction:** The Draft MMI consistently over-predicts EH MMI values for each site, possibly indicating additional metrics or covariates that need to be incorporated into the Draft MMI, and/or 2012 IW datasets. In this case, the validation will fail at least one statistical test (likely the MSE decomposition test), if not more.
- B. **Consistent Under-prediction:** The Draft MMI consistently under-predicts EH MMI values for each site, possibly indicating additional metrics or covariates that need to be incorporated into the Draft MMI and/or 2012 IW datasets. In this case, the validation will fail at least one statistical test (likely the MSE decomposition test), if not more.
- C. **Mixed Predictions:** The Draft MMI is inconsistent and inaccurate at prediction EH MMI values, leading to gross under- and over-predictions. A large range of EH MMI values are predicted, when in fact the actual (observed) range of EH MMI values is much smaller. In this case, the validation will fail the MSE decomposition test, the BJCI test, and the RI test.
- D. **Satisfactory Validation:** Predictions of EH MMIs match the observed EH MMI values reasonably well and the validation passed all three statistical tests. A large proportion of the variation in the scatterplot of observed EH MMI over predicted EH MMI is due to random errors and not systematic errors. In this case, the Draft MMI is considered to be successfully validated and no further calibration may be required.

FIGURE 5
Conceptualization of the Draft MMI Validation and Calibration Process, Using Four Statistical Validation Outcomes

Model Validation and Calibration Conceptualization

In the case of Draft MMI validation outcomes A through C, Step 2 would involve further exploration of metrics, including covariate variables that could have a strong effect on metric responses. This data exploration step is specifically guided by the Draft MMI validation outcomes and, in combination with the knowledge on the ecology of GSL IWs, leads to a more focused exploration of metrics/covariate variables that could potentially be incorporated into the Draft MMI and/or 2012 validation data set.


Step 3 would involve conducting the statistical validation using the modified Draft MMI and/or 2012 validation data set and Steps 2 and 3 would be repeated until the Draft MMI passes all three statistical validation tests (see Step 4).

2.2.3 Evaluating Additional Metrics and Covariate Variables within the Iterative Validation Framework

The evaluation of additional metrics and covariate variables affecting metric responses is an important component of the iterative Draft MMI validation and calibration process (see Steps 2 and 3 in Figure 5). These calibration steps are initiated when the Draft MMI fails one or more of the three statistical validation tests described in Section 2.2, and seek to improve the Draft MMI by focused exploration and inclusion of additional metrics and covariates variables, followed by revalidation of the improved Draft MMI to assess improvement.

Figure 6 outlines the iterative validation and Draft MMI calibration steps used in this study and highlights how the Draft MMI was statistically tested and improved by the exploration and addition of new macroinvertebrate metrics and a covariate variable salinity (method details are provided in Sections 2.2.3.1 and 2.2.3.2, respectively).

FIGURE 6
Iterative Validation and Calibration Process used in This Study to Improve the Draft MMI

In the overall validation process (see Figure 5), Step 1 consisted of using water chemistry MMIs for 2012 IW sites as input in the Draft MMI model to predict EH MMIs for each respective IW site (see Step 2). EH MMI predictions were statistically compared to EH MMI observed at those sites (see Step 3), resulting in a failed validation due to significant over-predictions of EH MMIs by the Draft MMI model.

One reason for this over-prediction of EH could be that the range of the small number of sites targeted for the Draft MMI dataset (n = 16) was too narrow relative to the range of conditions observed in 2012. Among these conditions, variable salinity (electrical conductance [EC]) across the IW sites in 2012 was identified as a potential covariate responsible at least in part for these over-predictions (see Step 4), and a decision was made to adjust EH MMI observations to account for these salinity effects (see Section 2.2.3.1 for details on how salinity effects adjustments were made). Salinity-adjusted EH MMI observations were then statistically compared to EH MMIs predicted with the Draft MMI (see Step 5, second validation), which still resulted in a failed validation due to over-predictions of the EH MMIs (see Step 6), even though the number and magnitude of over-predictions now was significantly reduced from the first validation.

This prompted the evaluation, and eventually the decision to incorporate new macroinvertebrate metrics into the Draft MMI and the 2012 IW dataset (see Section 2.2.3.2 for details on the methods). Step 7 involved using the WC MMIs for 2012 IW sites as input in the new Draft MMI model to predict new EH MMIs for each respective IW site (see Step 8). Salinity-adjustments were also made to the biotic MMIs (SAV and new macroinvertebrate MMI), which were then averaged along with the surface mat MMI (not adjusted for salinity, as it showed no response to salinity) to produce new EH MMI observations for IW sites (see Step 9). These new EH MMI observations were statistically compared to EH MMIs predicted by the new Draft MMI model (see Step 10), resulting in a successful validation. This validation process highlights how key covariates (EC) and new metrics (macroinvertebrates) were identified systematically and included iteratively into the validation of the Draft MMI.

2.2.3.1 Electrical Conductivity (Salinity) as a Covariate

The GSL IWs vary considerably in EC, and EC remains a potential covariate that could alter the interpretation of chemical or biological differences observed among different IW sites. In the development of the Draft MMI, no significant covariate effects of EC on chemical and biological metrics were noted likely because of the relatively small number (n = 16) of IW sites sampled for the Draft MMI (UDEQ, 2009). EC was therefore not factored into the Draft MMI (UDEQ, 2009). However, the 2012 data set included 53 IWs with considerable inter-site variability in EC (EC range = 451 to 17,017 microsiemens per centimeter [μ S/cm]), and the iterative Draft MMI validation/calibration process indicated that EC adjustments to biotic MMIs (for example, SAV and Macroinvertebrates) may be necessary for 2012 data. Observed biotic MMIs (bMMI_{Ob}) for each IW site were adjusted (standardized) for EC effects using the following procedure:

- Estimate average EC (EC_a) for each site from summer and fall EC measurements
- Estimate the geometric mean of average ECs across all 53 sites (ECgm)
- Estimate relative average EC (EC_r) for each site (EC_r = EC_a/EC_{gm})
- Develop regression models to define the relationships between the observed biotic MMIs (bMMI) and EC_r across the 53 IW sites (for each biotic MMI, if this relationship is nonlinear, estimate separate linear regression models for ascending [positively correlated values] and descending [inversely correlated values] portions)
- Use the regression models to estimate expected values for the biotic MMI (bMMI_{ev}) for each site, based on the input of estimated EC_r for that site
- Use the regression models to estimate the standardized biotic MMI for each site (bMMI_s), based on $EC_r = 1$ (EC_r standardized to the geometric mean of EC_s across all sites)
- Estimate the EC adjustment multiplier (EC_m) = bMMI_s/bMMI_{ev}
- Estimate EC adjusted biotic MMIs for each site (bMMI_{EC}) = bMMI_{Ob} × EC_m

2.2.3.2 New Macroinvertebrate Metrics and Macroinvertebrate MMI

The Macroinvertebrate MMI component of the Draft MMI included the following five key metrics: percent *Ephemeroptera*, percent *Hyallela*, total macroinvertebrate taxa, Simpson's Diversity Index, and number of

Coleoptera taxa (UDEQ, 2009). As discussed in Section 2.1.2.2 of this report, these same metrics were used to develop the Macroinvertebrate MMI component the EH MMI for IW sites in 2012 for the initial validation. The key criterion for the selection of these five macroinvertebrate metrics was based on the sensitivity of macroinvertebrates to different pollutants and the disturbance caused by stressor gradients (for example, nutrient gradients) in wetland ecosystems (UDEQ, 2009).

However, GSL studies have shown that macroinvertebrate taxa in impounded wetlands are generally tolerant of stressors typical in these systems, such as low DO, high pH, and high nutrients (Gray, 2013). Rather, any changes in macroinvertebrate composition in IWs other than seasonal life-cycle events and presence of extreme conditions reflect differences in salinity and the amount, condition and persistence of aquatic vegetation (Gray, 2013). For this reason, new macroinvertebrate metrics (suggested by Gray, 2013) that are linked to the quantity, quality, and persistence of rooted aquatic vegetation were evaluated and incorporated into a new Macroinvertebrate MMI (NMBI) for both the Draft MMI and the 2012 IW sites. The NMBI is predicated on the hypothesis that it better reflects habitat conditions in IWs, is aligned with the goal of preservation of wetlands diversity, and is more closely linked to the management goal of maintaining SAV to serve as food for migrating waterfowl and the public's (also known as duck hunters) perception of "good" IW habitats.

New Macroinvertebrate Metrics

The new macroinvertebrate metrics evaluated for GSL IWs are as follows:

- Phytophilous macroinvertebrates index (PMI): proportion of the total sample count consisting of macroinvertebrates that are closely associated with SAV for habitat, reproduction, and food resources (see Table 7)
- Chrysomelids-Odonata-Trichoptera-Ephemeroptera (COTE): proportion of the total sample count consisting of COTE species (see Table 7)
- Top three taxa (T3): proportion of the total sample count consisting of the three most abundant taxa associated with SAV
- Simpson's Diversity Index: overall measure of macroinvertebrate diversity

TABLE 7
Macroinvertebrate Taxa Contributing to the PMI and COTE Metrics and Ecological Association with SAV (data from by Gray, 2013)

PMI	СОТЕ	Taxon	Association with SAV	Clinger	Oviposition in SAV	Food Resource
Х	Х	Callibaetis	Strong	Yes	Facultative	Collector (epiphytes/detritus)
Х	Х	Caenis	Strong	Yes	Facultative	Collector (epiphytes/detritus)
Х	Х	Damselflies (Ischnura)	Strong	Yes	Yes	Predator
Х	Х	Libellulid Dragonflies (Erythemis)	Strong	Yes	Yes	Predator
Х	Х	Chrysomelidae larvae	Strong	Yes	Yes	Shredder (SAV)
Х	Х	Haliplus	Strong	Yes	Yes	Shredder (SAV)
Х	Х	Ylodes	Strong	Yes	Yes	Shredder (SAV)
Х		Gyraulus	Moderate-Strong	No	Facultative	Grazer (periphyton)
Х		Hesperocorixa	Moderate	No	Yes	Predator; Piercer-herbivore?

Notes:

COTE = Chrysomelids-Odonata-Trichoptera-Ephemeroptera

PMI = phytophilous macroinvertebrates index

SAV = submerged aquatic vegetation

Developing the NMBI for the Draft MMI and 2012 IW Sites

Maximum metric values among the sampling events were used for all of the new macroinvertebrate metrics. Three of these metrics—PMI, COTE, and Simpson's Diversity Index—were incorporated into the NMBI. As noted in Table 7, the PMI and COTE metrics have considerable overlap in the characteristics of the macroinvertebrate community they represent, and as such, COTE is a sub-set of PMI as all of the taxa representing COTE are also considered in PMI. Scores were assigned to the maximum values for each of the new macroinvertebrate metrics based on the quartiles of the metrics data across sites for the Draft MMI (see Table 8) and the 2012 IWs (see Table 9).

TABLE 8
Scoring System for New Macroinvertebrate Metrics for the Draft MMI

J J		Scoring ³					
Metric ^{1, 2}	1	3	5				
PMI	<0.59	0.59 to 0.77	>0.77				
COTE	<0.027	0.027 to 0.814	>0.814				
Simpson's Diversity Index	<0.027	0.027 to 0.425	>0.425				

Notes:

COTE = Chrysomelids-Odonata-Trichoptera-Ephemeroptera

PMI = phytophilous macroinvertebrates index

T3 = top three taxa

TABLE 9
Scoring System for New Macroinvertebrate Metrics for the IW in 2012

	Scoring ³					
Metric ^{1, 2}	1	3	5			
PMI	<0.227	0.227 to 0.718	>0.718			
COTE	<0.168	0.168 to 0.544	>0.544			
Simpson's Diversity Index	<0.625	0.625 to 0.811	>0.811			

Notes:

COTE = Chrysomelids-Odonata-Trichoptera-Ephemeroptera

PMI = phytophilous macroinvertebrates index

T3 = top three taxa

For each site, the scores for all metrics were summed to provide the MMI score for that site. Values of macroinvertebrate scores ranged from a minimum of 5 (each of the five metrics received a score of 1) to a maximum of 15 (each of the three metrics received a score of 5) for each site. The Macroinvertebrate MMI for each site was then estimated as follows:

Macroinvertebrate MMI = (summed score/15) \times 100

¹The T3 metric was unresponsive to water chemistry and was not used in the macroinvertebrate MMI (see results in Section 3)

²Future sensitivity analyses will be required to determine if only one of either PMI or COTE should be used, rather than both, as there is overlap in the characteristics they represent (Gray, 2013)

³Scores are based on the upper and lower quartiles as break points.

¹The T3 metric was unresponsive to water chemistry and was not used in the macroinvertebrate MMI (see results in Section 3)

²Future sensitivity analyses will be required to determine if only one of either PMI or COTE should be used, rather than both, as there is overlap in the characteristics they represent (Gray, 2013)

³Scores are based on the upper and lower quartiles as break points.

3. Results and Discussion

3.1 Compiling and Organizing Existing Data

3.1.1 Draft MMI Database (Historic Database 2003 to 2011)

Data from past studies on wetlands of GSL indicated water quality stressor gradients related to nutrients, total dissolved solids, TSS, pH, and DO (CH2M HILL, 2005 and 2006; Miller and Hoven, 2007). These previous studies and a screening of water quality variables (sampled from 2003 to 2009) against known thresholds aided in the selection of water quality metrics to include in the Draft MMI (see Table 3-1, from UDEQ, 2009). This process was repeated in this study to generate summary water quality statistics with 2010 to 2011 water quality data (see Table 11).

Summary statistics and screening thresholds for the 2010 to 2011 dataset were generally consistent (see Table 11) with those previously reported for the 2003 to 2009 sampling period (see Table 10, from UDEQ, 2009).

3.1.2 Independent 2012 IW Database

Summary statistics and screening thresholds for the 2012 water quality dataset were generally consistent (see Table 12) with those for the 2003 to 2009 and 2010 to 2011 sampling periods (see Tables 10 and 11). If the data were not consistent, then a different approach may have been required in the consideration of which water quality metrics should be used. As the 2012 and 2003 to 2009 datasets were generally consistent, the same water chemistry metrics for IWs in 2012 could be used for validation of the Draft MMI.

TABLE 10
Water Quality Characteristics and Potential Stressors for All Ponds (2003 to 2009)

water Quality Orlandetensites and					Percentiles					
Parameter	Units	Count	Min	GeoMean	50th (Median)	75th	90th	Max.	Screening value	Notes
Chlorophyll-a	μg/L	98	0.9	8.8	8	21	45	104	15	Eutrophic
D-Phosphorus	mg/L	85	0.02	0.2	0.2	0.7	1.0	1.4	0.1	Eutrophic (Utah code is 0.05)
T-Phosphorus	mg/L	494	0.02	0.2	0.2	0.6	1.0	6.4	0.1	Eutrophic (Utah code is 0.05)
Nitrogen, ammonia as N	mg/L	447	0.05	0.2	0.2	0.4	0.7	26.6	1.56	Toxicity (at pH 8.9, Classes 3B, C, and D)
Nitrogen, Nitrite+ Nitrate as N	mg/L	146	0.1	1.1	1.6	2.4	4.1	7.8	4	Eutrophic
Nitrogen, organic	mg/L	80	0.5	1.6	1.4	2.5	4.7	25.4	1.9	Eutrophic
T-Nitrogen	mg/L	80	0.5	2.0	1.6	3.3	7.8	52.0	1.9	Eutrophic
Dissolved oxygen	mg/L	483	0.04	8.4	9	12	14	23	<3	Toxicity
pH	_	881	6.21	8.9	8.9	9.3	9.7	13.0	<6.5 or >9	Toxicity
Salinity ¹	g/L (ppt)	473	0.2	1.8	1.4	3.0	6.4	59.9	3.9	Toxicity; tolerance limit for freshwater marsh
Temperature	°C							35.0	>27	Toxicity
Total Dissolved Solids	mg/L	534	254	1,719	1,360	2,790	6,104	204,000	(6,100)	Toxicity (90 th percentile)
Total Suspended Solids	mg/L	442	4	23.2	22	48	91	4,458	(91)	Toxicity (90 th percentile)
Electrical Conductance ¹	μS/cm	828	276.2	2,082.7	1,797	3,165	6,019	15,440	6,000	Toxicity; tolerance limit for freshwater marsh
Sulfate	mg/L	380	21	224	218	315	652	7,930	(650)	Toxicity (90 th percentile)

Notes:

¹Freshwater marsh salinity and electrical conductance tolerance limits from Smith et al., 2009

°C = degree(s) Celsius

μg/L = milligram(s) per liter

 μ S/cm = microsiemen(s) per centimeter

g/L = gram(s) per liter

Max. = maximum

mg/L = milligram(s) per liter

Min. = minimum

ppt = part(s) per trillion

Grey shaded values exceed screening criteria.

TABLE 11
Water Quality Characteristics and Potential Stressors for All Ponds (2010 to 2011)

						Percentiles				
				·	50 th			_	Screening	
Parameter	Units	Count	Min	GeoMean	(Median)	75 th	90 th	Max.	Value	Notes
Chlorophyll-a	μg/L	311	0.4	9.9	11.3	27.3	70.4	298.0	15	Eutrophic
D-Phosphorus	mg/L	247	0.002	0.21	0.24	0.52	0.83	3.50	0.1	Eutrophic (Utah code is 0.05)
T-Phosphorus	mg/L	64	0.006	0.28	0.29	0.66	0.91	1.43	0.1	Eutrophic (Utah code is 0.05)
Nitrogen, ammonia as N	mg/L	282	0.03	0.10	0.09	0.24	0.57	2.83	1.56	Toxicity (at pH 8.9, Class 3B, C and D)
Nitrogen, Nitrite+ Nitrate as N	mg/L	310	0.00	0.15	0.14	1.01	2.76	6.82	4	Eutrophic
Nitrogen, organic ²	mg/L	**	**	**	**	**	**	**	1.9	Eutrophic
T-Nitrogen	mg/L	310	0.3	1.4	1.2	2.3	4.5	7.7	1.9	Eutrophic
Dissolved Oxygen	mg/L	284	0.0	8.4	8.9	11.7	15.8	26.4	< 3	Toxicity
рН	-	290	7.0	8.8	8.8	9.3	9.6	10.4	<6.5 or >9	Toxicity
Salinity ¹	g/L (ppt)	290	0.0	1.2	1.0	1.4	3.7	16.7	3.9	Toxicity; tolerance limit for freshwater marsh
Temperature	°C	290	0.0	11.5	16.2	21.3	24.3	32.3	> 27	Toxicity
Total Dissolved Solids	mg/L	308	286.0	1,227.5	1,042.0	1,449.5	3,407.0	15,480.0	3407	Toxicity (90th percentile)
Total Suspended Solids	mg/L	308	2.0	27.5	27.1	74.0	86.3	984.0	86.3	Toxicity (90th percentile)
Electrical Conductance1	μS/cm	297	243	1,890.4	1,708	2,340	3,936	10,560	6000	Toxicity; tolerance limit for freshwater marsh
Sulfate as SO ₄	mg/L	308	10.0	172.8	195.0	228.3	326.3	1690.0	326.3	Toxicity (90th percentile)

Notes:

μg/L = microgram(s) per liter

 μ S/cm = microsiemen(s) per centimeter

g/L = gram(s) per liter

Max. = maximum

mg/L = milligram(s) per liter

Min. = minimum

ppt = parts per trillion

Grey shaded values exceed screening criteria.

¹Freshwater marsh salinity and electrical conductance tolerance limits from Smith et al., 2009.

²No data available.

[°]C = degree(s) Celsius

TABLE 12
Water Quality Characteristics and Potential Stressors for All Ponds (2012)

						Percentiles				
Parameter	Units	Count	Min	GeoMean	50 th (Median)	75 th	90 th	Max	Screening value	Notes
Chlorophyll-a	μg/L	104	0.4	2.8	2.7	9.5	27.7	173.1	15	Eutrophic
D-Phosphorus	mg/L	104	0.01	0.10	0.09	0.18	0.55	1.12	0.1	Eutrophic (Utah code is 0.05)
T-Phosphorus	mg/L	104	0.01	0.13	0.13	0.27	0.60	1.19	0.1	Eutrophic (Utah code is 0.05)
Nitrogen, ammonia as N	mg/L	104	0.02	0.04	0.03	0.08	0.21	1.08	1.56	Toxicity (at pH 8.9, Class 3B, C, and D)
Nitrogen, Nitrite+ Nitrate as N	mg/L	104	0.004	0.05	0.04	0.06	0.55	3.27	4	Eutrophic
Nitrogen, organic	mg/L	104	0.114	0.82	0.82	1.12	1.83	4.65	1.9	Eutrophic
T-Nitrogen	mg/L	104	0.3	1.0	1.0	1.4	2.0	4.0	1.9	Eutrophic
Dissolved Oxygen	mg/L	102	0.8	9.0	9.6	12.3	14.5	22.7	< 3	Toxicity
рН	-	102	7.3	8.9	8.9	9.4	9.9	10.5	<6.5 or >9	Toxicity
Salinity ¹	g/L (ppt)								3.9	Toxicity; tolerance limit for freshwater marsh
Temperature	deg. C	102	15.0	23.0	23.0	25.8	27.9	34.4	> 27	Toxicity
Total Dissolved Solids	mg/L	104	270	1,481	1,177	2,703	4,946	8,888	4946	Toxicity (90th percentile)
Total Suspended Solids	mg/L	104	2.0	15.5	15.5	32.0	113.0	1640.0	113	Toxicity (90th percentile)
Electrical Conductance ¹	μS/cm	102	451.0	2,707.9	2,033.0	5,212.3	8,772.5	17,017.0	6000	Toxicity; tolerance limit for freshwater marsh
Sulfate as SO ₄	mg/L	64	1.2	133.0	184.5	228.3	336.1	2,890.0	336	Toxicity (90th percentile)

Notes:

¹Freshwater marsh salinity and electrical conductance tolerance limits from Smith et al., 2009

μg/L = micrograms per liter

 μ S/cm = microsiemens per centimeter

g/L = gram(s) per liter

Max. = maximum

mg/L = milligram(s) per liter

Min. = minimum

ppt = parts per trillion

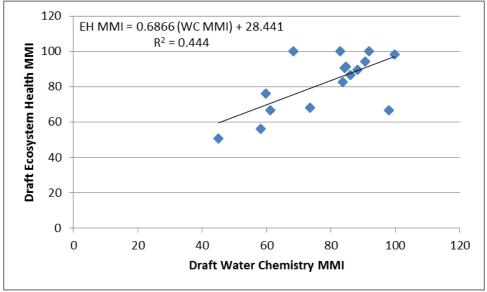
Grey shaded values exceed screening criteria.

[°]C = degrees Celsius

3.1.3 WC MMI for 2012 IW Sites

The WC MMI for 2012 IW sites ranged from 56 to 100, reflecting the variability in constituent water parameters and water quality among sites (see Table A1 in Appendix A)

3.1.4 Observed Biotic MMIs and the Observed EH MMI for 2012 IW Sites


The observed biotic MMIs (SAV, Surface Mat, and Macroinvertebrates) and the observed EH MMI for IW sites in 2012 are shown in Table 2A in Appendix A. The EH MMIs represent observations on the ecological health of the IW sites against which the Draft MMI is to be initially validated (see following section on Draft MMI validation).

3.2 Draft MMI Validation and Improvement: An Iterative Approach

3.2.1 Draft MMI: Initial Validation with 2012 IW Data (Steps 1 through 3 in Figure 6)

The Draft MMI model (UDEQ, 2009) describes the relationship between the EH MMIs and water chemistry MMIs for the 16 GSL IWs sites sampled from 2003 to 2009 (see Figure A6 and Table A3 in Appendix A). Independently observed water chemistry MMIs for the 2012 IW sites were used in this Draft MMI model to predict EH MMIs for each IW site in 2012 (see Table A4 in Appendix A). These predicted EH MMIs were then statistically compared to EH MMIs observed at those sites in 2012 (see Table A4 in Appendix A). The methods are described in Section 2.2 and illustrated in Steps 1 through 3 (first statistical validation) of Figure 7.

The scatterplot of observed versus predicted EH MMIs indicates that the Draft MMI consistently over-predicts EH MMIs for 2012 IW sites, and all but two sites fall under the 1:1 line indicating strong systematic errors (see Figure 8). The best fit regression line of observed versus predicted EH MMIs indicates that on average, the Draft MMI over-predicts EH MMIs by approximately 30 to 40 percent.

The Draft MMI clearly fails at least one of the three statistical validation procedures, specifically the decomposition of MSE test (see Table 13). Over 70 percent of the errors were attributable to MC of the MSE in the regression of observed versus predicted EH MMIs, indicating substantial differences between the means of observations and predictions, and, therefore, strong systematic errors. However, the SC contributed insignificantly to the MSE (0.2 percent of the MSE) and the slope of the regression of observed versus predicted EH MMIs approximately paralleled the 1:1 line (see Figure 8). This verifies that the Draft MMI provides a reasonable approximation of the variation in EH MMIs observed across sites in GSL. This is further supported by the BJCI test, which indicated that the BJCI of the regression of observed versus

predicted EH MMIs includes an intercept of 0 and a slope of 1, and thus does not deviate substantially from the 1:1 line. The reliability index for this Draft MMI validation was 1.5, indicating that approximately 68 percent of all observed EH MMI values are expected to be between 0.67 and 1.5 times the predicted values.

FIGURE 8
Initial Validation Comparing EH MMIs Predicted by the Draft MMI to EH MMIs Observed in IWs of GSL in 2012

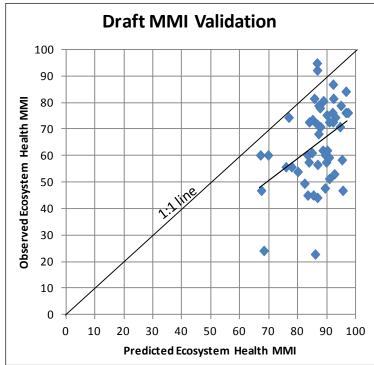


TABLE 13 Statistical Tests for Initial Validation of the Draft MMI

Statistical Validation Test	Test Results	Notes
Decomposition of Mean Square Error:		
Mean Component (% MC):	70.7	Large systematic errors due to MC – FAIL TEST
Slope Component (% SC):	0.2	Insignificant error due to SC – PASS TEST
Random Component (% RC):	29.0	Small proportion of random errors - FAIL TEST
Bonferroni Joint Confidence Intervals (BJCI):		
BJCI for Intercept:	-57.5 – 39.6	Includes intercept of 0 – PASS TEST
BJCI for Slope:	0.29 – 1.41	Includes slope of 1 – PASS TEST
Reliability Index:		
k:	1.5	Approximately 68 percent of all observed Ecosystem Health MMI values are expected to be between 0.67 and 1.5 times the predicted values – PASS TEST

3.2.2 Calibrating 2012 EH MMIs for Salinity Effects and Draft MMI Revalidation (see Steps 4 through 5 and Figure 6)

Consistent over-predictions of 2012 EH MMIs by the Draft MMI highlighted the need to explore potential factors contributing to these systematic errors. Further exploration of the 2012 data pointed to highly variable salinity (EC) among IW sites in 2012 as a potential contributor to variations in EH MMIs observed among the sites. Furthermore, EH MMIs showed a nonlinear response to average EC, increasing up to an average EC of approximately 4,000 μ S/cm and then declining at higher ECs (see Figure 9). Based on this

response, all EH MMI observations were adjusted for EC effects based on regression models of EH versus relative average EC (see Figure 10), followed by standardization of EH values to a relative average EC of 1 and application of the estimated multiplier. The EC-adjusted EH MMI observations for 2012 IW sites were then compared to EH MMIs that are predicted with the Draft MMI, using 2012 WC MMIs as the input (see Table A5 in Appendix A). The methods are described in Section 2.2 and illustrated in Steps 4 and 5 (calibration and first statistical validation) of Figure 6.

FIGURE 9
EH MMIs Plotted versus Average EC for 2012 IW Sites

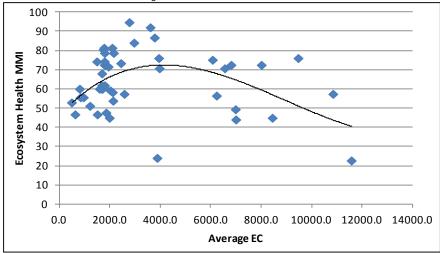
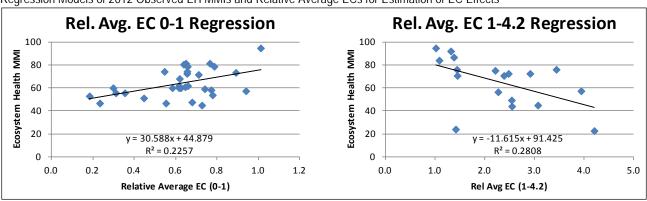



FIGURE 10
Regression Models of 2012 Observed EH MMIs and Relative Average ECs for Estimation of EC Effects

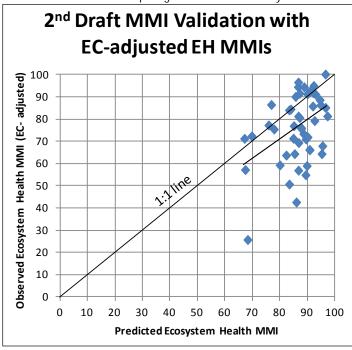
The scatterplot of EC-adjusted observed EH MMIs versus predicted EH MMIs indicates a significant improvement in the Draft MMI's accuracy in predicting ecosystem health for 2012 IW sites. Compared to the previous validation without EC adjustments, significantly more EH observations match predicted values, indicating a reduction in systematic errors (see Figure 11), due to reduction in variation from removal of EC effects. The best fit regression line of EC-adjusted observed versus predicted EH MMIs indicates that on average, the Draft MMI now over-predicts EH MMIs by approximately 12 to 15 percent, a significant improvement over the previous validation that over-predicted EH by 30 to 40 percent.

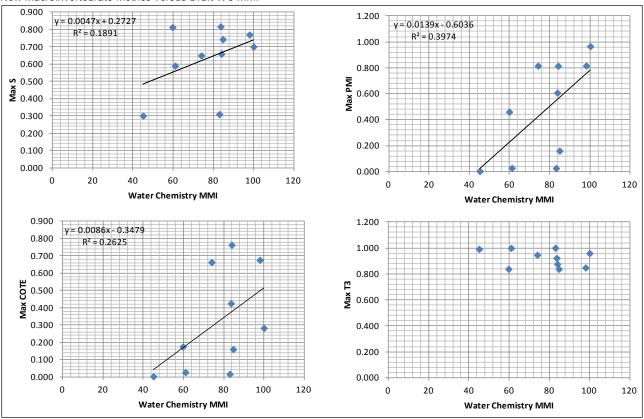
With EC adjustments to the 2012 IW EH MMIs, the Draft MMI performs significantly better at all three statistical validation procedures (see Table 14). A little over 32 percent of the MSE error was attributable to the MC in the regression of EC-adjusted observed versus predicted EH MMIs, and while this still represents a significant proportion of the MSE, it indicates a 54 percent decrease in MC error from the previous validation. The SC still contributed insignificantly to the MSE (0.2 percent of the MSE) and the slope of the

regression of EC-adjusted observed EH MMI versus predicted EH MMIs approximately paralleled the 1:1 line (see Figure 4). Over 67 percent of the MSE was now attributable to the RC, and overall, the MSE test indicated a more desirable distribution of MSE over the three sources of error (MC, SC, and RC) than in the previous validation (see Table 14). The BJCI of the regression of EC-adjusted observed EH MMI versus predicted EH MMIs includes an intercept of 0 and a slope of 1, and thus does not deviate substantially from the 1:1 line. The reliability index for this Draft MMI validation was 1.29, indicating that approximately 68 percent of all observed EH MMI values are expected to be between 0.78 and 1.29 times the predicted values. This reflects an improvement in the RI from the previous validation, further supporting an improvement in the accuracy of the Draft MMI.

The significant improvement in the EC-adjusted EH MMI validation indicated that further exploration of how EC may affect each individual biological MMI (SAV, Surface Mat, and Macroinvertebrates) was warranted.

FIGURE 11
Second Validation Test Comparing EH MMIs Predicted by the Draft MMI to EC-adjusted EH MMIs Observed in IWs of GSL in 2012




TABLE 14
Statistical Tests for Second Validation of the Draft MMI with EC-adjusted 2012 EH MMI

Statistical Validation Test	Test Results	Notes		
Decomposition of Mean Square Error:				
Mean Component (% MC):	32.4	Lower MC error than validation 1 – <u>FAILS TEST</u>		
Slope Component (% SC):	0.2	Insignificant error due to SC – PASS TEST		
Random Component (% RC):	67.4	Largest contributor to MSE error – FAILS TEST		
Bonferroni Joint Confidence Intervals (BJCI):				
BJCI for Intercept:	-49.9 to 48.8	Includes intercept of 0 – PASS TEST		
BJCI for Slope:	0.32 to 1.46	Includes slope of 1 – PASS TEST		
Reliability Index		Approximately 68 percent of all observed EH MMI		
k:	1.29	values are expected to be between 0.78 and 1.29 times the predicted values – PASS TEST		

3.2.3 Updated MMI: Revising the Draft MMI (2003 to 2009) with New Macroinvertebrate Metrics (see Step 6 in Figure 6)

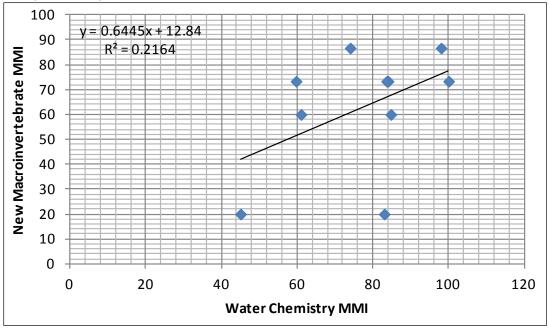

The responses of new macroinvertebrate metrics (suggested in Gray, 2013) including Simpson's Diversity Index (S), and proportions of PMI, T3, and COTE, to the draft water chemistry MMI were explored (see Figure 12A).

FIGURE 12A New Macroinvertebrate Metrics versus Draft WC MMI

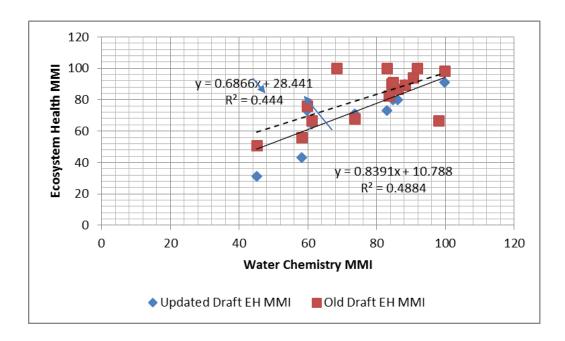

Except for T3, all other metrics were positively correlated with the WC MMI, and were included in the NMBI (Figure 12B). As previously noted, the PMI and COTE metrics have considerable overlap in the characteristics of the macroinvertebrate community they represent. As such, COTE is a sub-set of PMI as all of the taxa representing COTE are also considered in PMI (see Table 7). It is recommended that additional sensitivity analysis be conducted in the future to determine if only one of either PMI or COTE should be used, rather than both metrics in the development of the Macroinvertebrate MMI (Gray, 2013).

FIGURE 12B NMBI (2003 to 2009) versus Draft WC MMI

The NMBI was then added to the 2003 to 2009 SAV MMI and Surface Mat MMI to calculate the updated EH MMI. The NMBI improved the linear regression fit between the EH MMI and the WC MMI (see Figure 13), and particularly when a power fit was used to describe the relationship between these two variables (see Figure 14). This power fit model was then selected as the updated MMI (see Figure 14).

FIGURE 13
Comparison of the Old and Updated MMIs Fitted with Linear Regressions

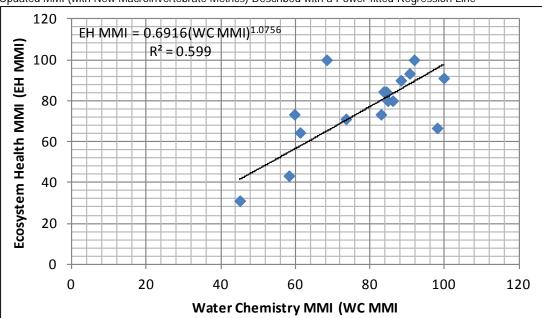


FIGURE 14
Updated MMI (with New Macroinvertebrate Metrics) Described with a Power-fitted Regression Line

3.2.4 Incorporating New Macroinvertebrate Metrics into the 2012 EH MMI (see Steps 6 and 9 in Figure 6)

The macroinvertebrate metrics including Simpson's Diversity Index, proportions of PMI, and the COTE were combined to develop the NMBI for IW sites in 2012 (see Step 6 of Figure 6 and Table A6 in Appendix A). The T3 metric was excluded because it was unresponsive to the WC MMI. The NMBI was adjusted for EC effects (see Step 9 in Figure 6) as described previously, and then combined with the EC-adjusted SAV MMI and Surface Mat MMI to develop the new EC-adjusted EH MMI draft for IW sites in 2012 (see Table A6 in Appendix A). The Surface Mat MMI was not adjusted for EC effects as it was found to be unresponsive to EC.

3.2.5 Validating the Updated MMI

The WC MMIs for 2012 IW sites were used in the updated MMI model (see Figure 14) to predict EH MMIs, which were then compared to EC-adjusted EH MMI observations for those sites (see Table A7 in Appendix A). For comparison, EH MMI observations that were not adjusted for EC are also listed in Table A8, Appendix A.

The scatterplot of EC-adjusted observed versus predicted EH MMIs indicates a significant improvement in the updated MMI's accuracy in predicting ecosystem health for 2012 IW sites. Compared to the previous validation of the old Draft MMI with EC adjustments, significantly more EH observations matched the predicted values, indicating a reduction in systematic errors (see Figure 15). The best fit regression line of EC-adjusted observed versus predicted EH MMIs indicates that on average, the updated MMI on average now over-predicts EH MMIs only by less than 8 percent, indicating a significant improvement over the previous validations of 30 to 40 percent (first validation) and 12 to 15 percent (second validation).

With EC adjustments and new macroinvertebrate metrics added to the 2012 IW EH MMI observations, the updated MMI (with new macroinvertebrate metrics) performs significantly better at all three statistical validation procedures (see Table 15) than the old Draft MMI. Compared to the previous validations, only 16.6 percent of the MSE error was attributable to the MC in the regression of EC-adjusted observed versus predicted EH MMIs (see Table 14), indicating a 77 and 49 percent decrease in MC error from the first and second validations, respectively. The SC contributed little error to the MSE (1.6 percent of the MSE) and the slope of the regression of EC-adjusted observed EH MMI versus predicted EH MMIs approximately paralleled the 1:1 line (see Figure 15). The majority of the error in the MSE (81.8 percent) was attributed to the RC.

Overall, the MSE test indicated a more desirable distribution of MSE over the three sources of error (MC, SC, and RC) than in the previous two validations (see Table 15). The BJCI of the regression of EC-adjusted observed EH MMI versus predicted EH MMIs included an intercept of 0 and a slope of 1, and did not deviate substantially from the 1:1 line. The reliability index for the updated MMI validation was 1.26, indicating that approximately 68 percent of all observed EH MMI values are expected to be between 0.79 and 1.26 times the predicted values. Overall, the accuracy of updated MMI was significantly improved over the old Draft MMI by the addition of new macroinvertebrate metrics.

FIGURE 15
Final Validation Test Comparing New EH MMI Predicted by the Updated MMI to EC-adjusted EH MMIs Observed in IWs of GSL in 2012

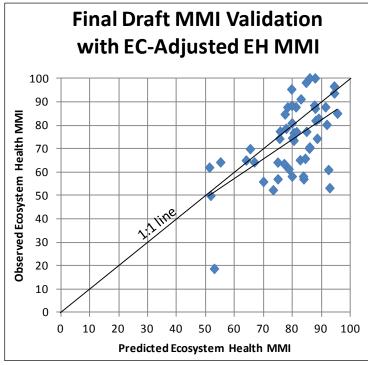


TABLE 15
Statistical Tests for Final Validation of the Updated Draft MMI with EC-adjusted 2012 EH MMI

Statistical Validation Test	Test Results	Notes		
Decomposition of Mean Square Error				
Mean Component (% MC):	16.6	Low MC error – PASS TEST		
Slope Component (% SC):	1.6	Very low SC error – PASS TEST		
Random Component (% RC):	81.8	High random error – PASS TEST		
Bonferroni Joint Confidence Intervals (BJCI)				
BJCI for Intercept:	-21.0 – 35.9	Includes intercept of 0 – PASS TEST		
BJCI for Slope:	0.47 - 1.19	Includes slope of 1 – PASS TEST		
Reliability Index		Approximately 68 percent of all observed EH MMI		
k:	1.26	values are expected to be between 0.79 and		
Ν.	1.20	1.26 times the predicted values – PASS TEST		

Conversely, the updated MMI (with new macroinvertebrate metrics) does not perform as well when compared to the 2012 observed EH MMIs without EC adjustments (Figure 16, Table 16, and Appendix A – Table A8).

FIGURE 16
Validation Test Comparing New EH MMI Predicted by the Updated MMI to EH MMIs without EC Adjustments Observed in IWs of GSL in 2012

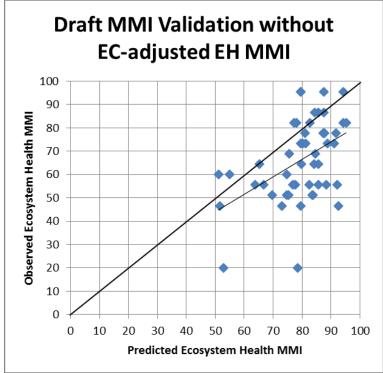
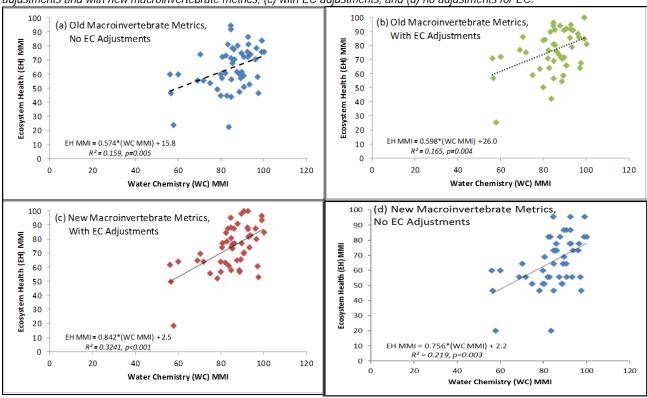


TABLE 16
Statistical Tests for Validation of the Updated Draft MMI with 2012 EH MMI without EC Adjustments


Statistical Validation Test	Test Results	Notes		
Decomposition of Mean Square Error				
Mean Component (% MC):	42.4	Relatively large MC error – FAIL TEST		
Slope Component (% SC):	1.2	Very low SC error – PASS TEST		
Random Component (% RC):	56.4	Relatively low RC error – FAIL TEST		
Bonferroni Joint Confidence Intervals (BJCI)				
BJCI for Intercept:	-26.6 – 40.2	Includes intercept of 0 – PASS TEST		
BJCI for Slope:	0.33 - 1.17	Includes slope of 1 – PASS TEST		
Reliability Index		Approximately 68 percent of all observed EH MMI		
k:	1.4	values are expected to be between 0.71 and		
Λ.	1.4	1.4 times the predicted values – PASS TEST		

3.2.6 EH and WC MMIs for 2012 IW Sites

Scatterplots and linear regressions of EH MMIs versus WC MMIs observed at IW sites in 2012 are also significantly improved when EC effects are accounted for in EH observations and when new macroinvertebrate metrics replace the old metrics in the EH MMI (Figure 17, a through d). The WC MMI accounted for only 15.9 percent ($r^2 = 0.159$) of the variation in EH MMIs with no EC adjustments and old macroinvertebrate metrics (see Figure 17a). The regression coefficient improves marginally ($r^2 = 0.165$) but with a higher intercept value when EC effects are accounted for, indicating that EC adjustments generally increased the EH MMI values (see Figure 17b). Accounting for both EC effects and new macroinvertebrate metrics in the EH MMIs leads to an overall reduction in variation around the line of best fit and an approximate doubling of the regression coefficient to $r^2 = 0.324$ (see Figure 17c). The fit of the regression between EH MMI and WC MMI weakens a bit without any EC adjustments and with only the new

macroinvertebrate metrics (Figure 17d), but is still better than when the old macroinvertebrate metrics were used (Figures 17a and 17b).

FIGURE 17
Linear Regressions of EH MMIs on WC MMIs for IW sites in 2012
Regressions are for observed EH MMIs estimated with old macroinvertebrate metrics and (a) no adjustments for EC, (b) with EC adjustments and with new macroinvertebrate metrics, (c) with EC adjustments, and (d) no adjustments for EC.

3.2.7 Relative Comparisons of EH for 2012 IW Sites

The observed EC-adjusted EH MMI values (see Table A7 in Appendix A) were sorted to facilitate a relative comparison of ecosystem health among the 2012 IW sites (Table 17). These comparisons are not intended to indicate the absolute condition of the IWs, but are only provided as a relative measure of how the IWs compare when based on EH MMIs estimated from SAV, new benthic macroinvertebrate, and surface mat metrics discussed in this study. Exploration of additional metrics that further helps characterize water/sediment chemistry and the biota of these IWs may be warranted to improve the MMI and better enable its use in estimating the condition of IWs of GSL.

TABLE 17Sorted EC-Adjusted EH MMI Observations for IWs in 2012

Storet Identification	Site Name	EC-adjusted EH MMI Observed in 20122
5971330	UNIT3	100
5971440	UNIT 35	100
5971530	WIDGEON	98
5971340	N GEDDYS	97
5971070	LFDC1	95
5971730	UNIT 3	94
5971090	TURPIN UNIT FBWMA	91
5971450	SHALLOW	88
5971850	W100	88
5971270	BIG BEAR	88
5971490	BRCCN	88
5971110	LFDC3	88
5971380	GARD POND	87
5971360	STELLA MARSH	85
5971120	NSDC1	85
5971300	TRADE LAKE	83
5971100	LFDC2	82
5971050	HDC1	81
5971230	HDC3	80
5971470	CORPORATION POND	78
5971160	NSDC2	77
5971780	FB SE UNIT 1	77
5971670	MAIN UNIT EAST	77
5971220	NPDC3	77
5971390	HULL LAKE	74
5971560	FB NE POND	74
5971480	UNIT 3N	74
5971060	UNIT 7	73
5971640	HS-S	71
5971410	BRCC NE	70
5971570	SOUTH AREA	70

TABLE 17Sorted EC-Adjusted EH MMI Observations for IWs in 2012

Storet Identification	Site Name	EC-adjusted EH MMI Observed in 20122
5971190	LFDC4	66
5971140	RDC	65
5971720	STEEDS POND	65
5971080	HDC2	64
5971690	HSE	64
5971680	WEBER DELTA	64
5971740	FBS UNIT 1	63
5971750	NSDC WALK IN	62
5971040	ISSR SW POND	61
5971510	BRCC SE	61
5971370	UNIT 4	58
5971660	UNIT 2 FBWMA	58
5971210	NPDC2	57
5971170	NPDC1	57
5971770	FB UNIT 1	56
5971590	BIG POND FBWMA	53
5971130	ISSR WEST B POND	52
5971710	FBS	50
5971540	UNIT IN	19
5971400	UNIT 5 ¹	-
5971650	RMP POND ¹	-
5971700	UNIT 1 NW ¹	-

Out of the 53 IW sites for which complete data were available (Table 17), 7 sites (14 percent) had EH MMIs ranging from 90 to 100, 12 (24 percent) sites had EH MMIs in the 80 to 89 range, and an equal number of sites (12) in the 70 to 79 range. EH MMIs at 10 sites (20 percent) ranged from 60 to 69, and at 8 sites (16 percent) from 50 to 59. One site (2 percent) had an EH MMI considerably below 50. Table A9 in Appendix A provides summary statistics comparing the distribution of values for the draft and updated MMIs.

 $^{^1}$ Missing chemistry data in Unit 5, RMP, and Unit 1 NW impounded wetlands sites excluded those sites from the Draft MMI validation.

²EC-adjusted observed EH MMI is the EH MMI calculated using EC-adjusted biotic MMI (SAV and new Macroinvertebrate) and non-adjusted surface mat data collected in 2012.

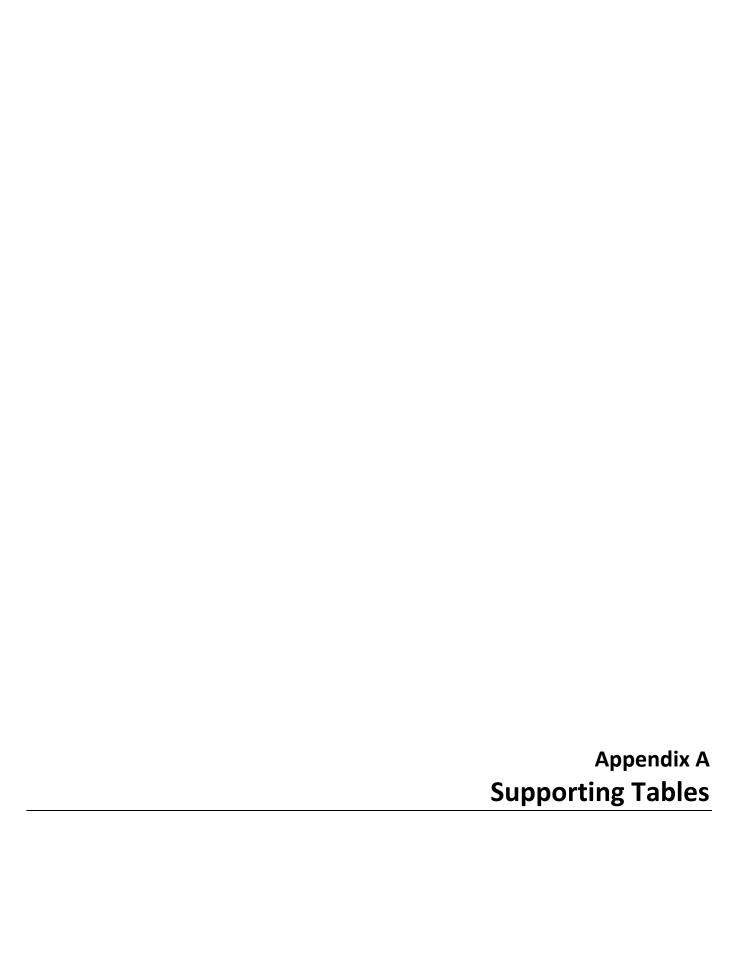
4. Conclusions and Recommendations

The independent evaluation of the Draft MMI conducted in this study strongly supports the validity and portability of the MMI approach in assessing the ecological health of IWs of GSL. The Draft MMI used data from multiple lines of evidence including WC, SAV, surface mat, and benthic macroinvertebrates, to describe condition of the IWs of GSL. Developed with data collected from 16 IW sites during 2003 to 2009, the Draft MMI was tested for its ability to predict the ecological health of 53 independent GSL IWs in 2012. Key results of the validation of the Draft MMI are summarized as follows:

- Thresholds of the summary statistics on water quality variables that were used to screen potential water quality metrics to include in the MMI did not change significantly when water quality data from 2010 and 2011 were added to the 2003 to 2009 water quality dataset. This indicates that the same water quality metrics could be used in future studies that seek to refine and improve the MMI with data collected in 2010 and 2011 (see Section 3.1.1).
- Summary statistics on water quality for IW sites in 2012 were consistent with those observed for the 2003 to 2011 period, indicating that it was acceptable to use the water quality metrics used in the Draft MMI to develop an independent water quality (Chemistry) MMI for IWs sites in 2012 (see Section 3.1.2).
- Metrics scoring criteria used for developing the biota MMIs (SAV, Surface Mat, and Macroinvertebrates)
 for the Draft MMI are not portable to the independent IWs dataset (2012 dataset). As such, separate
 metrics scoring criteria needed to be developed based on the individual biological metrics data collected
 in 2012 (see Sections 2.1.2.2 and 2.2.3.2).
- The Draft MMI validation approach uses independently observed WC MMIs for the 2012 IW sites to
 predict and compare EH MMIs to those observed independently at the IW sites. This approach provides
 a reasonable framework for validation of the Draft MMI based on a statistically rigorous comparison of
 independently observed and predicted EH MMIs (see Section 3.2).
- The validation approach used in this study is also useful for iteratively identifying potential sources of systematic errors in the EH predictions made by the Draft MMI, and then refining the Draft MMI to address those sources of error. This approach allowed for the identification and incorporation of salinity as a significant covariate variable affecting biotic MMIs (SAV and Macroinvertebrates) at IW sites in 2012. It also provided the basis for the incorporation of NMBI metrics (developed by Dr. Larry Gray, Utah Valley University) to improve the predictive capability of the Draft MMI (see Section 3.2).
- At initial validation, the Draft MMI consistently over-predicted EH MMIs for IW sites in 2012. Over
 70 percent of the systematic errors were attributable to the fact that observed EH MMIs were
 consistently lower (by as much as 30 to 40 percent) across IW sites in 2012 than those predicted by the
 Draft MMI (see Section 3.2.1).
- Consistent over-prediction bias in the initial validation of the Draft MMI pointed to salinity (EC) as a
 potential factor contributing to these systematic errors. In fact, variable salinity among IW sites in 2012
 contributed significantly to variations in EH MMIs observed among the sites. EH MMIs in 2012 were
 nonlinearly correlated to average EC across sites, and adjusting all EH MMI observations for EC effects
 significantly reduced the bias due to systematic errors (see Section 3.2.2).
- The second validation of the Draft MMI consisted of comparing EH MMIs predicted with the Draft MMI, to salinity-adjusted EH MMIs observed at IW sites in 2012. The Draft MMI's accuracy at predicting EH MMIs was now significantly improved and significantly more salinity-adjusted EH MMI observations matched predicted values. Systematic errors were reduced from over 70 percent in the initial validation to just over 32 percent when salinity adjustments were made to the observed EH MMIs. The Draft MMI now over-predicted salinity-adjusted EH MMIs by approximately 12 to 15 percent, which was a significant improvement over the previous validation (30 to 40 percent) (see Section 3.2.2).

- The Draft MMI was updated to incorporate the NMBI developed by Dr. Larry Gray that included metrics such as Simpson's Diversity Index (S), proportions of PMI, and the COTE. These three metrics more closely reflected the variations observed in macroinvertebrate communities at IW sites due to differences in salinity and the amount, condition, and persistence of SAV. The NMBI, based on these three metrics, was also developed for IW sites in 2012. The original Macroinvertebrate MMI in the Draft MMI consisted of the following five metrics: percent *Ephemeroptera*, percent *Hyallela*, total macroinvertebrate taxa, Simpson's Diversity Index, and number of *Coleoptera* taxa. The new NMBI significantly improved the predictive accuracy of the updated Draft MMI (Section 3.2.3).
- The PMI and COTE metrics that are components of the NMBI have considerable overlap in the characteristics of the macroinvertebrate community they represent. Additional sensitivity analysis should be conducted in the future to determine if only one of either PMI or COTE should be used, rather than both metrics in the development of the Macroinvertebrate MMI.
- The third (final) validation consisted of comparing EH MMIs predicted with the updated Draft MMI, to EC-adjusted EH MMIs observed at IW sites in 2012. Significantly more EC-adjusted EH observations now matched EH values predicted by the updated Draft MMI, indicating a further reduction in systematic errors from the previous two validations (see Figure 15). The updated draft MMI on average overpredicted EH MMIs by less than 8 percent indicating a significant improvement over the previous validations of 30 to 40 percent (first validation) and 12 to 15 percent (second validation). Systematic errors were now reduced to only 16.6 percent of the MSE error, reflecting a 49 percent decrease in error from the Draft MMI without new macroinvertebrate metrics (second validation). Based on all three statistical tests, the overall accuracy of updated Draft MMI was significantly improved by the addition of new macroinvertebrate metrics (see Section 3.2.4).
- The capacity of the WC MMI to explain observed variations in EH MMI was tested for IW sites in 2012. Even when both EC effects and the new macroinvertebrate metrics were included in the EH MMI for 2012, the WC MMI explained only approximately 32 percent of the variation in EH MMI. This indicates that additional metrics, including the evaluation of separate disturbance gradients, should be explored to provide a stronger stressor response model describing the health of GSL IWs.

4.1 Next Steps


It is recommended that UDWQ move forward with the updated MMI as described in this study that incorporates the new macroinvertebrate metrics, with the caveat that further consideration be given to exploration and potential inclusion of additional metrics to improve the MMI. Suggested next steps in improving the IW MMI include consideration of metrics that describe additional lines of evidence including, but not limited to, water/sediment chemistry (ammonia) toxicity potential, pH and sediment organic matter, sediment toxicity (heavy metals, sulfate), and zooplankton. Based on analysis completed to date for 2012 IW data, it appears that focusing first on exploration of biotic responses to pH would be warranted. In addition, the effects of inter-annual and intra-annual variations in hydrology including the evaluation of effects of wet year versus dry year, residence time, water depth, and operational/maintenance characteristics of each IW site will further benefit MMI refinement by highlighting potential covariates/metrics that could be considered.

4.2 Acknowledgements

We thank Larry Gray, Utah Valley University, for providing data on the new macroinvertebrate metrics and for input on the macroinvertebrate component of the MMI, and Jeff Ostermiller and Toby Hooker, UDWQ, for discussion and input that markedly shaped the analyses completed.

5. References

- CH2M HILL. 2006. Analyses of 2005 Data on Wetland Biota and Water Quality in Farmington Bay, Great Salt Lake, Utah. Prepared for Central Davis Sewer District and Utah Department of Environmental Quality, Division of Water Quality (UDWQ). November 26.
- CH2M HILL. 2005. Statistical Analyses of 2004 Data on Wetland Plants and Invertebrates in Farmington Bay, Great Salt Lake, Utah. Prepared for Central Davis Sewer District and Utah Department of Environmental Quality, Division of Water Quality (UDWQ). September 13.
- Gray, Dr. Larry. 2013. "Impounded Wetlands Macroinvertebrates and Zooplankton: Trends and Metrics." Presentation to Utah Division of Water Quality and CH2M HILL. May 9.
- Gray, L.J. 2009. *Macroinvertebrates in the Wetlands of the Great Salt Lake*. Prepared for Utah Department of Environmental Quality, Division of Water Quality. April.
- Gray, L.J. 2005. Composition of Macroinvertebrate Communities of the Great Salt Lake Wetlands and Relationships to Water Chemistry. Prepared for Utah Department of Environmental Quality, Division of Water Quality (UDWQ). March.
- Karr, J.R. and E.W. Chu. 1999. Restoring Life in Running Waters: Better Biological Monitoring. Island Press. 206p.
- Leggett, R.W. and L.R. Williams. 1981. "A reliability index for models." Ecological Modelling. 13: 303-312.
- Miller, T.G. and H.M. Hoven. 2007. *Ecological and Beneficial Use Assessment of Farmington Bay Wetlands:*Assessment Methods Development Progress Report to EPA, Region VIII.
- Neter, J., W. Wasserman, and M.H. Kutner. 1989. Applied Linear Regression Models. 2nd edition. Irwin.
- Rice, J.A. and P.A. Cochran. 1984. "Independent evaluation of a bioenergetics model for largemouth bass." *Ecology*. 65: 732-739.
- Smith, S. M., C. Roman, M. James-Pirri, K. Chapman, J. Portnoy, and E. Gwilliam. 2009. Responses of plant communities to incremental hydrologic restoration of a tide-restricted salt marsh in southern New England (Massachusetts, USA). Restoration Ecology 17(5):606–618.
- Utah Department of Environmental Quality (UDEQ). 2012. *Great Salt Lake Impounded Wetlands: 2012 Probabilistic Survey of Wetland Condition*. Sampling and Analysis Plan. June 8. <u>SAP Report</u>.
- Utah Department of Environmental Quality (UDEQ). 2009. Development of an assessment framework for impounded wetlands of the Great Salt Lake. Draft Report. Department of Environmental Quality, Division of Water Quality. November. 2009 Assessment Framework IW Report.

TABLE A1Observed WC MMI for 2012 Impounded Wetland Sites and Constituent Water Parameter MMIs

Storet Identification	Site Name	TSS MMI	Chlorophyll-a MMI	DO MMI	Phosphorus MMI	Nitrogen MMI	Average Chemistry MMI	2012 WC MMI
5971040	ISSR SW POND	80	95	56	95	63	78	84
5971050	HDC1	99	100	84	30	80	79	85
5971060	UNIT 7	99	94	57	53	93	79	85
5971070	LFDC1	95	100	33	76	88	79	84
5971080	HDC2	98	93	28	10	49	56	60
5971090	TURPIN UNIT FBWMA	88	94	58	75	92	81	88
5971100	LFDC2	100	100	69	72	90	86	93
5971110	LFDC3	84	100	40	73	90	77	83
5971120	NSDC1	89	81	51	82	78	76	82
5971130	ISSR WEST B POND	89	91	39	80	65	73	78
5971140	RDC	100	99	86	29	92	81	87
5971160	NSDC2	97	85	42	60	90	75	81
5971170	NPDC1	100	99	52	71	90	82	89
5971190	LFDC4	99	100	42	89	84	83	89
5971210	NPDC2	98	100	44	55	-	74	80
5971220	NPDC3	100	99	69	38	90	79	85
5971230	HDC3	100	100	95	65	89	90	96
5971270	BIG BEAR	88	95	45	94	78	80	86
5971300	TRADE LAKE	92	92	79	89	83	87	94
5971330	UNIT3	96	94	62	97	82	86	92
5971340	N GEDDYS	98	99	75	99	89	92	99
5971360	STELLA MARSH	99	99	88	95	85	93	100
5971370	UNIT 4	92	84	44	89	84	79	85
5971380	GARD POND	98	100	59	87	86	86	93
5971390	HULL LAKE	86	98	30	93	87	79	85
5971400	UNIT 5	_	_	_	_	_	_	_
5971410	BRCC NE	95	95	71	90	70	84	91
5971440	UNIT 35	95	97	50	94	86	84	91
5971450	SHALLOW	95	97	53	96	87	86	92
5971470	CORPORATION POND	85	96	47	89	67	77	83
5971480	UNIT 3N	88	56	62	87	81	75	80
5971490	BRCCN	98	97	64	96	91	89	96

TABLE A1Observed WC MMI for 2012 Impounded Wetland Sites and Constituent Water Parameter MMIs

Storet Identification	Site Name	TSS MMI	Chlorophyll-a MMI	DO MMI	Phosphorus MMI	Nitrogen MMI	Average Chemistry MMI	2012 WC MMI
5971510	BRCC SE	97	97	76	93	87	90	97
5971530	WIDGEON	98	97	36	98	87	83	89
5971540	UNIT IN	60	16	42	70	81	54	58
5971560	FB NE POND	98	98	43	98	96	87	93
5971570	SOUTH AREA	86	98	32	21	89	65	70
5971590	BIG POND FBWMA	92	94	85	92	90	91	97
5971640	HS-S	99	100	47	85	90	84	91
5971650	RMP POND	_	_	_	_	_	_	_
5971660	UNIT 2 FBWMA	99	99	46	77	91	82	88
5971670	MAIN UNIT EAST	91	93	37	93	87	80	86
5971680	WEBER DELTA	91	53	50	84	92	74	80
5971690	HSE	73	97	22	72	69	67	72
5971700	UNIT 1 NW	_	_	_	_	_	_	_
5971710	FBS	85	89	19	33	36	52	56
5971720	STEEDS POND	43	64	41	83	88	64	69
5971730	UNIT 3	99	96	100	84	80	92	99
5971740	FBS UNIT 1	95	93	37	70	86	76	82
5971750	NSOC WALK IN	44	2		72	90	52	56
5971770	FB UNIT 1	100	99	6	56	87	70	75
5971780	FB SE UNIT 1	95	96	55	79	90	83	90
5971850	W100	100	100	33	76	84	79	85

DO = dissolved oxygen

MMI = multi-metric index

TSS = total suspended solids

WC = water chemistry

WC MMI could not be estimated in Unit 5, RMP, and Unit 1 NW impounded wetlands sites because of missing data.

TABLE A2Observed Biotic and EH MMIs for Impounded Wetland Sites – 2012

Storet Identification	Site Name	SAV MMI	Surface Mat MMI	Macroinvertebrate MMI	ЕН ММІ
5971040	ISSR SW POND	20	20	28	23
5971050	HDC1	87	60	68	72
5971060	UNIT 7	100	20	84	68
5971070	LFDC1	100	100	84	95
5971080	HDC2	100	20	60	60
5971090	TURPIN UNIT FBWMA	73	100	68	80
5971100	LFDC2	100	60	84	81
5971110	LFDC3	60	100	84	81
5971120	NSDC1	60	100	60	73
5971130	ISSR WEST B POND	20	100	28	49
5971140	RDC	73	20	92	62
5971160	NSDC2	73	60	84	72
5971170	NPDC1	20	60	100	60
5971190	LFDC4	60	60	52	57
5971210	NPDC2	47	20	68	45
5971220	NPDC3	100	60	76	79
5971230	HDC3	100	60	76	79
5971270	BIG BEAR	73	100	60	78
5971300	TRADE LAKE	47	100	76	74
5971330	UNIT3	73	100	44	72
5971340	N GEDDYS	100	100	28	76
5971360	STELLA MARSH	100	60	68	76
5971370	UNIT 4	20	60	52	44
5971380	GARD POND	100	100	60	87
5971390	HULL LAKE	33	100	36	56
5971400	UNIT 5	_	100	68	84
5971410	BRCC NE	73	60	44	59
5971440	UNIT 35	73	100	44	72
5971450	SHALLOW	100	100	28	76
5971470	CORPORATION POND	47	60	28	45
5971480	UNIT 3N	20	100	52	57
5971490	BRCCN	60	100	52	71

TABLE A2
Observed Biotic and EH MMIs for Impounded Wetland Sites – 2012

Storet Identification	Site Name	SAV MMI	Surface Mat MMI	Macroinvertebrate MMI	ЕН ММІ
5971510	BRCC SE	87	20	68	58
5971530	WIDGEON	73	100	52	75
5971540	UNIT IN	_	20	28	24
5971560	FB NE POND	47	60	52	53
5971570	SOUTH AREA	47	100	76	74
5971590	BIG POND FBWMA	20	100	20	47
5971640	HS-S	73	20	60	51
5971650	RMP POND	_	20	52	36
5971660	UNIT 2 FBWMA	47	20	76	48
5971670	MAIN UNIT EAST	60	100	52	71
5971680	WEBER DELTA	_	100	20	60
5971690	HSE	47	100	20	56
5971700	UNIT 1 NW	_	100	28	64
5971710	FBS	20	100	20	47
5971720	STEEDS POND	47	100	20	56
5971730	UNIT 3	100	100	52	84
5971740	FBS UNIT 1	87	20	76	61
5971750	NSDC WALK IN	_	100	20	60
5971770	FB UNIT 1	73	20	68	54
5971780	FB SE UNIT 1	73	60	52	62
5971850	W100	100	100	76	92

EH = ecosystem health MMI = multi-metric index

SAV = submerged aquatic vegetation

TABLE A3
Draft MMI Data for Great Salt Lake Impounded Wetlands Sites, 2003 to 2009 (UDEQ, 2009)

Storet Identification	Site Name	ЕН ММІ	WC MMI
4985320	Farmington Wetlands Ambassador W 1	56	58
4985330	Farmington Wetlands Ambassador 100	87	86
4985340	Farmington Wetlands Ambassador W 2	94	91
4985350	Farmington Wetlands Ambassador W 5	90	88
4985430	Farmington Wetlands South B Pond	100	83
4985440	Farmington Wetlands West A Pond	67	61
4985465	IMPC Conservation Easement	100	68
4985500	Farmington Wetlands FBWMA Unit 2 Outfall	68	74
4985520	Farmington Wetlands FBWMA Unit 1 Outfall	67	98
4985620	GSL Wetlands Public Shooting Ground Widgeon Lake 01 Outfall	90	84
4985630	GSL Wetlands Public Shooting Ground Pintail Lake Outfall	98	100
4985655	Bear River NWR Pond 4C Outfall	100	92
4985860	Newstate Duck Club Middle Unit	83	84
4985870	GSL Wetlands Newstate Duck Club Pond 47	51	45
4985880	GSL Wetlands Newstate Duck Club Pond 20	91	85
4985890	GSL Wetlands Newstate Duck Club Unit 5-6	76	60

EH = ecosystem health MMI = multi-metric index WC = water chemistry

TABLE A4
2012 Water Chemistry and Ecosystem Health MMI Observations in Impounded Wetlands of the Great Salt Lake and EH MMI
Predicted for 2012 Sites from the Draft MMI
Data for the first statistical validation of the Draft MMI

		Draft MMI Model Input	Independent Observations	Draft MMI Model Output
Storet Identification	Site Name	Observed 2012 WC MMI ¹	Observed 2012 EH MMI ²	Predicted 2012 EH MMI ³
5971040	ISSR SW POND	84	23	86
5971050	HDC1	85	72	87
5971060	UNIT 7	85	68	87
5971070	LFDC1	84	95	86
5971080	HDC2	60	60	70
5971090	TURPIN UNIT FBWMA	88	80	89
5971100	LFDC2	93	81	92
5971110	LFDC3	83	81	86
5971120	NSDC1	82	73	85
5971130	ISSR WEST B POND	78	49	82
5971140	RDC	87	62	88
5971160	NSDC2	81	72	84
5971170	NPDC1	89	60	89
5971190	LFDC4	89	57	90
5971210	NPDC2	80	45	83
5971220	NPDC3	85	79	87
5971230	HDC3	96	79	95
5971270	BIG BEAR	86	78	87
5971300	TRADE LAKE	94	74	93
5971330	UNIT3	92	72	92
5971340	N GEDDYS	99	76	96
5971360	STELLA MARSH	100	76	97
5971370	UNIT 4	85	44	87
5971380	GARD POND	93	87	92
5971390	HULL LAKE	85	56	87
5971400	UNIT 5	_	84	_
5971410	BRCC NE	91	59	91
5971440	UNIT 35	91	72	91
5971450	SHALLOW	92	76	92
5971470	CORPORATION POND	83	45	85

TABLE A4
2012 Water Chemistry and Ecosystem Health MMI Observations in Impounded Wetlands of the Great Salt Lake and EH MMI
Predicted for 2012 Sites from the Draft MMI
Data for the first statistical validation of the Draft MMI

Storet Identification	Site Name	Draft MMI Model Input Observed 2012 WC MMI ¹	Independent Observations Observed 2012 EH MMI ²	Draft MMI Model Output Predicted 2012 EH MMI ³
5971480	UNIT 3N	80	57	84
5971490	BRCCN	96	71	94
5971510	BRCC SE	97	58	95
5971530	WIDGEON	89	75	90
5971540	UNIT IN	58	24	68
5971560	FB NE POND	93	53	92
5971570	SOUTH AREA	70	74	77
5971590	BIG POND FBWMA	97	47	95
5971640	HS-S	91	51	91
5971650	RMP POND	_	36	_
5971660	UNIT 2 FBWMA	88	48	89
5971670	MAIN UNIT EAST	86	71	88
5971680	WEBER DELTA	80	60	83
5971690	HSE	72	56	78
5971700	UNIT 1 NW	_	64	_
5971710	FBS	56	47	67
5971720	STEEDS POND	69	56	76
5971730	UNIT 3	99	84	96
5971740	FBS UNIT 1	82	61	85
5971750	NSDC WALK IN	56	60	67
5971770	FB UNIT 1	75	54	80
5971780	FB SE UNIT 1	90	62	90
5971850	W100	85	92	87

EH = ecosystem health

MMI = multi-metric index

SAV = submerged aquatic vegetation

WC = water chemistry

Missing chemistry data in Unit 5, RMP, and Unit 1 NW impounded wetlands sites excluded those sites from the Draft MMI validation.

¹Observed WC MMI is the MMI calculated from WC data collected in 2012.

²Observed EH MMI is the EH MMI calculated using biotic MMI (SAV, Surface Mat, and Macroinvertebrates) data collected in 2012.

³EH MMIs were predicted from the Draft MMI model (see Figure 7) using the observed WC MMIs for each site.

TABLE A5
EC-adjusted EH MMI Compared to EH MMI Predicted with the Draft MMI
Original 2012 observations of EH MMIs and WC MMIs used as input in the Draft MMI are also shown

Storet Identification	Site Name	Observed 2012 EH MMI (not EC adjusted) ⁴	Draft MMI Model Input Observed 2012 WC MMI ¹	Independent Observations EC-adjusted EH MMI Observed in 2012 ³	Draft MMI Model Output Predicted 2012 EH MMI (from Draft MMI) ²
5971040	ISSR SW POND	23	84	42	86
5971050	HDC1	72	85	81	87
5971060	UNIT 7	68	85	80	87
5971070	LFDC1	95	84	94	86
5971080	HDC2	60	60	72	70
5971090	TURPIN UNIT FBWMA	80	88	94	89
5971100	LFDC2	81	93	95	92
5971110	LFDC3	81	83	90	86
5971120	NSDC1	73	82	77	85
5971130	ISSR WEST B POND	49	78	64	82
5971140	RDC	62	87	73	88
5971160	NSDC2	72	81	84	84
5971170	NPDC1	60	89	71	89
5971190	LFDC4	57	89	59	90
5971210	NPDC2	45	80	50	83
5971220	NPDC3	79	85	91	87
5971230	HDC3	79	96	86	95
5971270	BIG BEAR	78	86	76	87
5971300	TRADE LAKE	74	94	91	93
5971330	UNIT3	72	92	100	92
5971340	N GEDDYS	76	99	100	96
5971360	STELLA MARSH	76	100	81	97
5971370	UNIT 4	44	85	57	87
5971380	GARD POND	87	93	92	92
5971390	HULL LAKE	56	85	69	87
5971400	UNIT 5	84	_	_	_
5971410	BRCC NE	59	91	66	91
5971440	UNIT 35	72	91	92	91
5971450	SHALLOW	76	92	86	92
5971470	CORPORATION POND	45	83	64	85
5971480	UNIT 3N	57	80	100	84
5971490	BRCCN	71	96	88	94
5971510	BRCC SE	58	97	64	95

TABLE A5
EC-adjusted EH MMI Compared to EH MMI Predicted with the Draft MMI
Original 2012 observations of EH MMIs and WC MMIs used as input in the Draft MMI are also shown

Storet Identification	Site Name	Observed 2012 EH MMI (not EC adjusted) ⁴	Draft MMI Model Input Observed 2012 WC MMI ¹	Independent Observations EC-adjusted EH MMI Observed in 2012 ³	Draft MMI Model Output Predicted 2012 EH MMI (from Draft MMI) ²
5971530	WIDGEON	75	89	91	90
5971540	UNIT IN	24	58	26	68
5971560	FB NE POND	53	93	79	92
5971570	SOUTH AREA	74	70	86	77
5971590	BIG POND FBWMA	47	97	68	95
5971640	HS-S	51	91	66	91
5971650	RMP POND	36	_	_	_
5971660	UNIT 2 FBWMA	48	88	55	89
5971670	MAIN UNIT EAST	71	86	76	88
5971680	WEBER DELTA	60	80	84	83
5971690	HSE	56	72	75	78
5971700	UNIT 1 NW	64	_	_	_
5971710	FBS	47	56	57	67
5971720	STEEDS POND	56	69	77	76
5971730	UNIT 3	84	99	85	96
5971740	FBS UNIT 1	61	82	71	85
5971750	NSDC WALK IN	60	56	71	67
5971770	FB UNIT 1	54	75	59	80
5971780	FB SE UNIT 1	62	90	72	90
5971850	W100	92	85	96	87

EC = electrical conductance

EH = ecosystem health

MMI = multi-metric index

SAV = submerged aquatic vegetation

WC = water chemistry

Missing chemistry data in Unit 5, RMP, and Unit 1 NW impounded wetlands sites excluded those sites from the Draft MMI validation.

¹Observed WC MMI is the MMI calculated from WC data collected in 2012.

²EH MMIs were predicted from the Draft MMI model (Figure 7) using the observed WC MMIs for each site.

³EC-adjusted observed EH MMI is the EH MMI calculated using biotic MMI (SAV, Surface Mat, and Macroinvertebrates) data collected in 2012, which was then adjusted to remove the variation in the data due to EC effects.

⁴Observed EH MMI is the EH MMI calculated using biotic MMI (SAV, surface mat, and macroinvertebrates) data collected in 2012, which was not adjusted for EC effects and is shown here for comparison purposes.

TABLE A6New EC-adjusted EH MMI for 2012 Impounded Wetland Sites Derived from Biotic Variables

Storet Identification	Site Name	2012 EC-adjusted SAV MMI	Surface Mat MMI	2012 EC-adjusted NMBI	Observed 2012 EC-adjusted New EH MMI ¹
5971040	ISSR SW POND	65	20	98	61
5971050	HDC1	99	60	83	81
5971060	UNIT 7	100	20	100	73
5971070	LFDC1	100	100	86	95
5971080	HDC2	100	20	72	64
5971090	TURPIN UNIT FBWMA	87	100	86	91
5971100	LFDC2	100	60	86	82
5971110	LFDC3	67	100	96	88
5971120	NSDC1	63	100	91	85
5971130	ISSR WEST B POND	28	100	29	52
5971140	RDC	88	20	87	65
5971160	NSDC2	86	60	85	77
5971170	NPDC1	24	60	87	57
5971190	LFDC4	62	60	75	66
5971210	NPDC2	53	20	98	57
5971220	NPDC3	100	60	70	77
5971230	HDC3	100	60	80	80
5971270	BIG BEAR	63	100	100	88
5971300	TRADE LAKE	58	100	90	83
5971330	UNIT3	100	100	100	100
5971340	N GEDDYS	100	100	90	97
5971360	STELLA MARSH	100	60	95	85
5971370	UNIT 4	28	60	86	58
5971380	GARD POND	86	100	75	87
5971390	HULL LAKE	43	100	80	74
5971400	UNIT 5	_	100	_	_
5971410	BRCC NE	83	60	67	70
5971440	UNIT 35	100	100	100	100
5971450	SHALLOW	99	100	66	88
5971470	CORPORATION POND	75	60	100	78
5971480	UNIT 3N	44	100	79	74

TABLE A6New EC-adjusted EH MMI for 2012 Impounded Wetland Sites Derived from Biotic Variables

Storet Identification	Site Name	2012 EC-adjusted SAV MMI	Surface Mat MMI	2012 EC-adjusted NMBI	Observed 2012 EC-adjusted New EH MMI ¹
5971490	BRCCN	81	100	82	88
5971510	BRCC SE	96	20	66	61
5971530	WIDGEON	94	100	100	98
5971540	UNIT IN	_	20	17	19
5971560	FB NE POND	73	60	90	74
5971570	SOUTH AREA	55	100	54	70
5971590	BIG POND FBWMA	30	100	29	53
5971640	HS-S	97	20	95	71
5971650	RMP POND	_	20	_	_
5971660	UNIT 2 FBWMA	54	20	100	58
5971670	MAIN UNIT EAST	65	100	66	77
5971680	WEBER DELTA		100	28	64
5971690	HSE	65	100	27	64
5971700	UNIT 1 NW	_	100	_	_
5971710	FBS	25	100	24	50
5971720	STEEDS POND	67	100	28	65
5971730	UNIT 3	97	100	84	94
5971740	FBS UNIT 1	100	20	70	63
5971750	NSDC WALK IN	_	100	24	62
5971770	FB UNIT 1	81	20	66	56
5971780	FB SE UNIT 1	86	60	85	77
5971850	W100	88	100	77	88

¹EC-adjusted observed EH MMI was estimated as the average of Surface Mat MMI, EC-adjusted SAV MMI, and the new EC-adjusted Macroinvertebrate MMI, based on actual independent data that was collected at impounded wetlands sites in 2012.

EC = electrical conductance

EH = ecosystem health

MMI = multi-metric index

NMBI = new Macroinvertebrate MMI

SAV = submerged aquatic vegetation

TABLE A7New EC-adjusted EH MMI Observations Compared to EH MMI Predicted Using the Updated MMI

Storet Identification	Site Name	Observed 2012 New EH MMI ¹	Updated MMI Model Input Observed 2012 WC MMI ²	Independent Observations EC-adjusted EH MMI Observed in 2012 ⁴	Updated MMI Model Output Predicted 2012 EH MMI ³
5971040	ISSR SW POND	20	84	61	79
5971050	HDC1	73	85	81	80
5971060	UNIT 7	73	85	73	80
5971070	LFDC1	96	84	95	79
5971080	HDC2	60	60	64	55
5971090	TURPIN UNIT FBWMA	82	88	91	83
5971100	LFDC2	78	93	82	88
5971110	LFDC3	82	83	88	78
5971120	NSDC1	82	82	85	77
5971130	ISSR WEST B POND	47	78	52	73
5971140	RDC	56	87	65	82
5971160	NSDC2	69	81	77	76
5971170	NPDC1	51	89	57	84
5971190	LFDC4	64	89	66	84
5971210	NPDC2	51	80	57	75
5971220	NPDC3	73	85	77	80
5971230	HDC3	78	96	80	92
5971270	BIG BEAR	78	86	88	81
5971300	TRADE LAKE	73	94	83	89
5971330	UNIT3	87	92	100	88
5971340	N GEDDYS	82	99	97	94
5971360	STELLA MARSH	82	100	85	95
5971370	UNIT 4	47	85	58	80
5971380	GARD POND	96	93	87	88
5971390	HULL LAKE	64	85	74	80
5971400	UNIT 5	87	_	_	_
5971410	BRCC NE	64	91	70	86
5971440	UNIT 35	87	91	100	86
5971450	SHALLOW	78	92	88	87
5971470	CORPORATION POND	56	83	78	78
5971480	UNIT 3N	51	80	74	75
5971490	BRCCN	73	96	88	91
5971510	BRCC SE	56	97	61	92
5971530	WIDGEON	87	89	98	84

TABLE A7
New EC-adjusted EH MMI Observations Compared to EH MMI Predicted Using the Updated MMI

Storet Identification	Site Name	Observed 2012 New EH MMI ¹	Updated MMI Model Input Observed 2012 WC MMI ²	Independent Observations EC-adjusted EH MMI Observed in 2012 ⁴	Updated MMI Model Output Predicted 2012 EH MMI ³
5971540	UNIT IN	20	58	19	53
5971560	FB NE POND	56	93	74	88
5971570	SOUTH AREA	64	70	70	65
5971590	BIG POND FBWMA	47	97	53	93
5971640	HS-S	56	91	71	86
5971650	RMP POND	20	_	ı	_
5971660	UNIT 2 FBWMA	51	88	58	84
5971670	MAIN UNIT EAST	73	86	77	81
5971680	WEBER DELTA	60	80	64	75
5971690	HSE	56	72	64	67
5971700	UNIT 1 NW	60	_		_
5971710	FBS	47	56	50	52
5971720	STEEDS POND	56	69	65	64
5971730	UNIT 3	96	99	94	94
5971740	FBS UNIT 1	56	82	63	77
5971750	NSDC WALK IN	60	56	62	51
5971770	FB UNIT 1	51	75	56	70
5971780	FB SE UNIT 1	69	90	77	85
5971850	W100	96	85	88	80

EC = electrical conductance

EH = ecosystem health

MMI = multi-metric index

SAV = submerged aquatic vegetation

WC = water chemistry

Missing chemistry data in Unit 5, RMP and Unit 1 NW impounded wetlands sites excluded those sites from the Draft MMI validation.

¹Based on actual data collected from impounded wetlands sites in 2012, and includes new macroinvertebrate metrics—MMI is not adjusted for salinity (EC) effects and is provided here for comparison.

²Observed WC MMI is the MMI calculated from WC data collected from impounded wetlands sites in 2012.

³EH MMIs were predicted from the updated MMI model (see Figure 14) using the observed WC MMIs for each site.

⁴EC-adjusted observed EH MMI is the EH MMI calculated using EC-adjusted biotic MMI (SAV and new Macroinvertebrate) and non-adjusted surface mat data collected in 2012.

TABLE A8
New EH MMI Observations without EC Adjustments, Compared to EH MMI Predicted Using the Updated MMI

			Updated MMI Model Input	Updated MMI Model Output	
Storet Identification	Site Name	Observed 2012 New EH MMI ¹	Observed 2012 WC MMI ²	Predicted 2012 EH MMI ³	
5971040	ISSR SW POND	20	84	79	
5971050	HDC1	73	85	80	
5971060	UNIT 7	73	85	80	
5971070	LFDC1	96	84	79	
5971080	HDC2	60	60	55	
5971090	TURPIN UNIT FBWMA	82	88	83	
5971100	LFDC2	78	93	88	
5971110	LFDC3	82	83	78	
5971120	NSDC1	82	82	77	
5971130	ISSR WEST B POND	47	78	73	
5971140	RDC	56	87	82	
5971160	NSDC2	69	81	76	
5971170	NPDC1	51	89	84	
5971190	LFDC4	64	89	84	
5971210	NPDC2	51	80	75	
5971220	NPDC3	73	85	80	
5971230	HDC3	78	96	92	
5971270	BIG BEAR	78	86	81	
5971300	TRADE LAKE	73	94	89	
5971330	UNIT3	87	92	88	
5971340	N GEDDYS	82	99	94	
5971360	STELLA MARSH	82	100	95	
5971370	UNIT 4	47	85	80	
5971380	GARD POND	96	93	88	
5971390	HULL LAKE	64	85	80	
5971400	UNIT 5	87	_	_	
5971410	BRCC NE	64	91	86	
5971440	UNIT 35	87	91	86	
5971450	SHALLOW	78	92	87	
5971470	CORPORATION POND	56	83	78	

TABLE A8
New EH MMI Observations without EC Adjustments, Compared to EH MMI Predicted Using the Updated MMI

Storet Identification Site Name		Observed 2012 New EH MMI ¹	Updated MMI Model Input Observed 2012 WC MMI ²	Updated MMI Model Output Predicted 2012 EH MMI ³	
5971480	UNIT 3N	51	80	75	
5971490	BRCCN	73	96	91	
5971510	BRCC SE	56	97	92	
5971530	WIDGEON	87	89	84	
5971540	UNIT IN	20	58	53	
5971560	FB NE POND	56	93	88	
5971570	SOUTH AREA	64	70	65	
5971590	BIG POND FBWMA	47	97	93	
5971640	HS-S	56	91	86	
5971650	RMP POND	20	_	_	
5971660	UNIT 2 FBWMA	51	88	84	
5971670	MAIN UNIT EAST	73	86	81	
5971680	WEBER DELTA	60	80	75	
5971690	HSE	56	72	67	
5971700	UNIT 1 NW	60	_	_	
5971710	FBS	47	56	52	
5971720	STEEDS POND	56	69	64	
5971730	UNIT 3	96	99	94	
5971740	FBS UNIT 1	56	82	77	
5971750	NSDC WALK IN	60	56	51	
5971770	FB UNIT 1	51	75	70	
5971780	FB SE UNIT 1	69	90	85	
5971850	W100	96	85	80	

EC = electrical conductance

EH = ecosystem health

MMI = multi-metric index

WC = water chemistry

Missing chemistry data in Unit 5, RMP and Unit 1 NW impounded wetlands sites excluded those sites from the Draft MMI validation.

¹Based on actual data collected from impounded wetlands sites in 2012, and includes new macroinvertebrate metrics—MMI is not adjusted for salinity (EC) effects.

²Observed WC MMI is the MMI calculated from WC data collected from IW sites in 2012.

³EH MMIs were predicted from the updated MMI model (see Figure 14) using the observed WC MMIs for each site.

TABLE A9
MMI Data Summary for the Draft (2003 to 2009) and 2012 Datasets

		Percentiles					
MMI Data Summary	Min	25th	50 th (Median)	75th	Max.		
Draft MMI Data (2003 to 2009)							
Chemistry MMI	45	67	84	89	100		
SAV MMI	33	57	93	100	100		
Surface Mat MMI	40	75	80	100	100		
Macroinvertebrate MMI	68	81	88	94	100		
Ecosystem Health MMI	51	68	88	95	100		
New Macroinvertebrate MMI ¹	20	60	73	73	87		
Updated Ecosystem Health MMI ²	31	70	80	90	100		
2012 Survey Data							
Chemistry MMI	56	81	86	92	100		
SAV MMI	20	47	73	93	100		
Surface Mat MMI	20	60	100	100	100		
Macroinvertebrate MMI	20	36	52	76	100		
Ecosystem Health MMI	23	56	62	76	95		
New Macroinvertebrate MMI ¹	20	47	60	73	100		
Updated Ecosystem Health MMI ²	20	56	64	78	96		

Max. = maximum

MMI = multi-metric index

SAV = submerged aquatic vegetation

 $^{^{1}}$ Based on macroinvertebrate metrics, including PMI, COTE, and Simpson's Diversity Index

² Includes New Macroinvertebrate MMI